I Factoring Matrices with Elementary Row Operations

AI Thread Summary
The discussion revolves around finding a sequence of elementary matrices for the matrix A = [[4, -1], [3, -1]]. The original poster's method involves multiple row operations, leading to their conclusion that A can be expressed as A = E1^(-1)E2^(-1)E3^(-1)E4^(-1). However, the book's answer suggests a different sequence: A = E2^(-1)E3^(-1)E4^(-1), which causes confusion. Participants note that the sequence of operations is not unique and that the steps taken can vary, with one suggesting a more efficient approach. Ultimately, the original poster confirms that their calculations align with the matrix A, indicating their method is valid despite being longer.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
TL;DR Summary
I am working on reviewing some Linear Algebra for a Graduate course in the Spring. I thought I did it correctly when I finished. But I looked in the book a different answer. I used my calculator to check the book answer and gives the correct matrix.
Dear Everybody,

I have some trouble with this problem: Finding a sequence of elementary matrix for this matrix A.

Let ##A=\begin{bmatrix} 4 & -1 \\ 3& -1\end{bmatrix}##. I first used the ##\frac{1}{4}R1##-> ##R1##. So the ##E_1=\begin{bmatrix} \frac{1}{4} & 0 \\ 0& 1\end{bmatrix}##. So the matrix ##A= \begin{bmatrix}1 & \frac{-1}{4} \\ 3& -1\end{bmatrix}## we can use ##-3R1+R2->R2##. ##A''= \begin{bmatrix}1 & \frac{-1}{4} \\ 0& \frac{-1}{4}\end{bmatrix}## and ##E_2=\begin{bmatrix} 1 & 0 \\ -3& 1\end{bmatrix}##. We multiply ##4R2->R2##,##A'''= \begin{bmatrix} 1 & \frac{-1}{4} \\ 0& 1\end{bmatrix}## and ##E_3=\begin{bmatrix} 1 & 0 \\ 0& 4\end{bmatrix}##. Then we multiply 1/4 to row 2 and add to row 1,##A''''= \begin{bmatrix}1 & 0 \\ 0& 1\end{bmatrix}## and ##E_4=\begin{bmatrix} 1 & \frac{1}{4} \\ 0& 1\end{bmatrix}##. So ##A={E_1}^{-1}{E_2}^{-1}{E_3}^{-1}{E_4}^{-1}##. But in the book's answer key, it said that ##A={E_2}^{-1}{E_3}^{-1}{E_4}^{-1}##.

I am confused as to why the book's answer is different from mine. I understand that the sequence is not unique. Here is the study guide's answer as well.
 

Attachments

Mathematics news on Phys.org
The pdf shows that row 1 doesn’t have a 4. Are you looking at the right solution?

When we did row reduction in Linear Algebra, we were taught to avoid adding/ subtracting fractions if at all possible so the notion of dividing by 4 to get a 1 in that row would not be considered. Instead we would add / subtract the rows to get a 1 meaning we’d go for the -1 column.
 
jedishrfu said:
The pdf shows that row 1 doesn’t have a 4. Are you looking at the right solution?
The PDF shows the resulting matrix after the row operation has been performed. The steps shown in the PDF are correct.

cbarker1 said:
So ##A={E_1}^{-1}{E_2}^{-1}{E_3}^{-1}{E_4}^{-1}##. But in the book's answer key, it said that ##A={E_2}^{-1}{E_3}^{-1}{E_4}^{-1}##.
I haven't taken the time to calculate all of the above inverses. Does the product you show come out to A? If so, then your work is correct, albeit slightly longer than what is shown in the PDF.
cbarker1 said:
I am confused as to why the book's answer is different from mine. I understand that the sequence is not unique. Here is the study guide's answer as well.
They used some different steps. You could have shortened your work a bit in step 3 by -1/4R2 + R1 --> R1, instead of what you did.
 
  • Like
Likes sysprog and cbarker1
Mark44 said:
The PDF shows the resulting matrix after the row operation has been performed. The steps shown in the PDF are correct.I haven't taken the time to calculate all of the above inverses. Does the product you show come out to A? If so, then your work is correct, albeit slightly longer than what is shown in the PDF.

They used some different steps. You could have shortened your work a bit in step 3 by -1/4R2 + R1 --> R1, instead of what you did.
I checked with my calculator. My sequence is the same as the matrix given.
 
cbarker1 said:
I checked with my calculator. My sequence is the same as the matrix given.
Then the difference is just that you used some different steps.
 
  • Like
Likes jedishrfu and cbarker1
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top