- #1
ramsey2879
- 841
- 3
For every pair (a,b) of factors that equal the trangular number m(m+1)/2 there are two distinct sets of pairs (c,d) that form a determinant equal to 2m+1 such that the products (a+cn)*(b+dn) = a triangular number for all n. Is this a previously known fact and how can it be prooved?
ramsey2879 in the topic "New Conjecture" said:For instance, the triangular number T(37) has 12 factors which yields the [tex](a,b)[/tex] pairs 1,666; 2,333; 3,222; 6,111; 9,74 and 18,37. The respective sets of [tex]c,d[/tex] pairs in determinant format are
[tex]\left| \begin{smallmatrix}
1 & 648\\ 2 & 1369
\end{smallmatrix}\right|[/tex]
[tex]\left| \begin{smallmatrix}
1 & 162\\ 8 & 1369
\end{smallmatrix}\right|[/tex]
[tex]\left| \begin{smallmatrix}
1 & 72\\ 18 & 1369
\end{smallmatrix}\right|[/tex]
[tex]\left| \begin{smallmatrix}
1 & 18\\ 72 & 1369
\end{smallmatrix}\right|[/tex]
[tex]\left| \begin{smallmatrix}
1 & 8\\ 162 & 1369
\end{smallmatrix}\right|[/tex]
[tex]\left| \begin{smallmatrix}
1 & 2\\ 648 & 1369
\end{smallmatrix}\right|[/tex]
Each determinant equals [tex]37^2 - 36^2[/tex] and each of (1 + n)*(666+648n), (1 + 2n)*(666+1369n), (2+n)*(333+162n), ... (18+n)*(37+2n), (18+648n)*(37+1369n) are each triangular numbers for all integer n. In short if a given triangular number [a*b] has M factors, there are M different sets of products (a' + cn)(b' + dn) where a'b' = ab, c is prime to d and the products remain as triangular numbers for all integer n.