- #1
Michael Korobov
- 6
- 0
- Homework Statement
- An instrument-carrying rocket accidentally explodes at the top of its trajectory. The horizontal distance between the launch point and the point of explosion is L. The rocket breaks into two pieces that fly apart horizontally. The larger piece has three times the mass of the smaller piece. To the surprise of the scientist in charge, the smaller piece returns to Earth at the launching station. How far away does the larger piece land? Neglect air resistance and effects due to the Earth’s curvature.
- Relevant Equations
- Momentum conserved
Kinematics equations
Hi,
Can anyone hint me if there is issue in the problem statement?
Consistent answer can be obtained if one presumes that the trajectory of center mass is parabolic.
Assuming this, the CM will land at distance L right to the axis of symmetry of parabola.
But the problem tells about a rocket, therefore first part of rocket movement is not free fall and thus the horizontal distance of falling after the top of trajectory is not necessarily L.
Is it deduction correct?
Can anyone hint me if there is issue in the problem statement?
Consistent answer can be obtained if one presumes that the trajectory of center mass is parabolic.
Assuming this, the CM will land at distance L right to the axis of symmetry of parabola.
But the problem tells about a rocket, therefore first part of rocket movement is not free fall and thus the horizontal distance of falling after the top of trajectory is not necessarily L.
Is it deduction correct?