MHB Fallin' staR's question at Yahoo Answers regarding kinematics

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Kinematics
AI Thread Summary
The discussion revolves around a kinematics problem involving a motorbike and a car accelerating from a stop at traffic lights. The motorbike accelerates at 2.5 m/s² to a top speed of 20 m/s, while the car accelerates at 1.5 m/s² to a top speed of 30 m/s. After calculations, it is determined that the motorbike and car will be side by side again after 22 seconds, and the maximum distance the motorbike is ahead of the car is approximately 53.3 meters. The participants also discuss how to graph the displacement-time relationship, noting that the accelerated portion is represented by a curve. Understanding these concepts is crucial for solving similar kinematic problems effectively.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Maths Prob5: Velocity & Acceleration?

A motorbike and a car are waiting side by side at traffic lights, when the lights turn to green, the motorbike accelerates at a 2.5 m/s² up to a top speed of 20 m/s, and the car accelerates at 1.5 m/s² up to a top speed of 30 m/s . Both then continue to move at constant speed. Draw (t,v) graphs for each vehicle, using the same axes, and sketch the (t,s) graphs.

(a) after what time will the motorbike and the car again be side by side?
(b) what is the greatest distance that the motorbike is in front of the car?

No need to show the Graphs, BUT I do want to know how to draw Displacement-time Graph when the object accelerates up to a point and then moves in a constant velocity, maybe accelerated part is curve line ?!

ANSWERS: (a) 22s (b) 53.3m

#Mechanics #A-Level

HELP!

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Fallin' staR,

We will let $a(t)$ be acceleration, $v(t)$ be velocity, and $s(t)$ be position, and use a subscript of $\text{M}$ for the motorbike and a subscript of $\text{C}$ for the car.

For the motorbike, during the time its acceleration is greater than zero, that is, when its velocity is changing, we may state:

$$\int_0^{v(t)}\,du=\frac{5}{2}\int_0^t\,dw$$

$$v(t)=\frac{5}{2}t$$

Now, we need to find at what value of $t$ we have $v(t)=20$, thus:

$$20=\frac{5}{2}t$$

Solve for $t$:

$$t=8$$

And so we may now give the velocity of the motorbike as:

$$v_{\text{M}}(t)=\begin{cases}\frac{5}{2}t & t<8\\ 20 & 8\le t \\ \end{cases}$$

For the car, during the time its acceleration is greater than zero, that is, when its velocity is changing, we may state:

$$\int_0^{v(t)}\,du=\frac{3}{2}\int_0^t\,dw$$

$$v(t)=\frac{3}{2}t$$

Now, we need to find at what value of $t$ we have $v(t)=30$, thus:

$$30=\frac{3}{2}t$$

Solve for $t$:

$$t=20$$

And so we may now give the velocity of the car as:

$$v_{\text{C}}(t)=\begin{cases}\frac{3}{2}t & t<20\\ 30 & 20\le t \\ \end{cases}$$

Here is a plot of the two velocity functions on the same axes:

View attachment 1234

To generate this graph, I used the command:

piecewise[{{(5/2)t,0<=t<8},{20,8<=t}}],piecewise[{{(3/2)t,0<=t<20},{30,20<=t}}] where t=0 to 30

at Wolfram|Alpha: Computational Knowledge Engine

Now, to find the position function of the motorbike, we may use:

On the interval $0\le t<8$:

$$\int_0^{s(t)}\,du=\frac{5}{2}\int_0^{t} w\,dw$$

$$s(t)=\frac{5}{4}t^2$$

We will need to know that:

$$s(8)=80$$

On the interval $8\le t$:

$$\int_{s(8)}^{s(t)}\,du=20\int_8^t \,dw$$

$$s(t)=20t-80$$

Thus, we may state:

$$s_{\text{M}}(t)=\begin{cases}\frac{5}{4}t^2 & t<8\\ 20t-80 & 8\le t \\ \end{cases}$$

Now, to find the position function of the car, we may use:

On the interval $0\le t<20$:

$$\int_0^{s(t)}\,du=\frac{3}{2}\int_0^t w\,dw$$

$$s(t)=\frac{3}{4}t^2$$

We will need to know that:

$$s(20)=300$$

On the interval $20\le t$:

$$\int_{s(20)}^{s(t)}\,du=30\int_{20}^t \,dw$$

$$s(t)=30t-300$$

Thus, we may state:

$$s_{\text{C}}(t)=\begin{cases}\frac{3}{4}t^2 & t<20\\ 30t-300 & 20\le t \\ \end{cases}$$

Using the command:

piecewise[{{(5/4)t^2,0<=t<8},{20t-80,8<=t}}],piecewise[{{(3/4)t^2,0<=t<20},{30t-300,20<=t}}] where t=0 to 30

we obtain the plot:

View attachment 1235

Now we may answer the two questions:

(a) after what time will the motorbike and the car again be side by side?

From the graph, we see we want to equate the two linear portions of the position functions:

$$20t-80=30t-300$$

$$10t=220$$

$$t=22\text{ s}$$

Thus, we find that the motorbike and the car are again side by side 22 seconds after the traffic light turns green.

(b) what is the greatest distance that the motorbike is in front of the car?

The graph shows us that this will occur on the interval $8<t<20$. Hence we want to maximize the function:

$$f(t)=\left(20t-80 \right)-\left(\frac{3}{4}t^2 \right)=-\frac{3}{4}t^2+20t-80$$

Completing the square, we find:

$$f(t)=-\frac{3}{4}\left(t-\frac{40}{3} \right)^2+\frac{160}{3}$$

Hence:

$$f_{\max}=\frac{160}{3}\text{ m}$$

And so we find the greatest distance that the motorbike is in front of the car to be about 53.3 m.
 

Attachments

  • fallinstar1.jpg
    fallinstar1.jpg
    7.8 KB · Views: 101
  • fallinstar2.jpg
    fallinstar2.jpg
    8.4 KB · Views: 97
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top