Falling mass, additionally accelerated by a rope

  • #1
greypilgrim
543
37
Thread moved from the technical forums to the schoolwork forums
Hi.

The following situation:
1720905043855.png


The pulleys are fixed to the floor/ceiling and massless, as are the ropes, and there is no friction. At ##t=0##, the masses are released from rest.

For the moment, I'll assume ##m_2\gg m_1##. So ##m_2## will accelerate at ##g## and the red rope at ##\frac{d_1}{d_2}g##. How do I now find the accelerations of motion for ##m_1##?

At the very beginning, as far as I can see ##m_1## experiences a downward force ##F_1=m_1 g+\frac{d_2}{d_1}m_2 g##. But I'm quite sure the tension in the red rope decreases, but how exactly?
 
Physics news on Phys.org
  • #2
Hi,

you want to write down a few equations. choose/define relevant variables and work towards ##N## equations with ##N## unknowns.
What about the tensions in the red rope at the (massless!) lower pulley ?
And tensions in the red and blue ropes at the upper pulley ?
And the in the blue rope is related to the acceleration of ##m_2##
 
  • #3
greypilgrim said:
For the moment, I'll assume ##m_2\gg m_1##. So ##m_2## will accelerate at ##g## and the red rope at ##\frac{d_1}{d_2}g##. How do I now find the accelerations of motion for ##m_1##?

At the very beginning, as far as I can see ##m_1## experiences a downward force ##F_1=m_1 g+\frac{d_2}{d_1}m_2 g##. But I'm quite sure the tension in the red rope decreases, but how exactly?
If ##m_2 \gg m_1## then we can treat the downward acceleration of ##m_2## as being fixed. You already realize this.

This means that the downward acceleration of ##m_1## is also fixed. (Assuming ##d_2 > d_1## so that the rope does not go slack).

What is the resulting acceleration of ##m_1##?
What forces act on ##m_1##?
Which of those forces do you already know?
Does this allow you to calculate the remaining force?

If ##m_2## is not vastly greater than ##m_1## then you will have some simultaneous equations to solve as @BvU suggests.
 
  • #4
jbriggs444 said:
This means that the downward acceleration of is also fixed.
By "fixed", do you mean constant?
 
  • #5
greypilgrim said:
By "fixed", do you mean constant?
Constant yes. But I mean that it is "determined". Given what you already know, there is only one value it could possibly be.
 
  • #6
But if the blue rope accelerates at ##g##, then the red one does so at ##\frac{d_1}{d_2}g##. And if my ##F_1## from #1 is correct and constant, then ##m_1## accelerates at ##g+\frac{d_2}{d_1}\frac{m_2}{m_1}g## which is bigger than ##\frac{d_1}{d_2}g## given that ##\frac{m_2}{m_1}\gg 1##.

This would mean that the rope goes slack immediately. But then again ##m_1## falls freely at ##g##, allowing the rope to tension again and so forth... What's wrong?
 
  • #7
greypilgrim said:
But if the blue rope accelerates at ##g##, then the red one does so at ##\frac{d_1}{d_2}g##. And if my ##F_1## from #1 is correct and constant, then ##m_1## accelerates at ##g+\frac{d_2}{d_1}\frac{m_2}{m_1}g## which is bigger than ##\frac{d_1}{d_2}g## given that ##\frac{m_2}{m_1}\gg 1##.

This would mean that the rope goes slack immediately. But then again ##m_1## falls freely at ##g##, allowing the rope to tension again and so forth... What's wrong?
greypilgrim said:
But if the blue rope accelerates at ##g##, then the red one does so at ##\frac{d_1}{d_2}g##. And if my ##F_1## from #1 is correct and constant
Huh? You have given no valid computation for ##F_1##.

What you know is how ##m_1## moves. You can use that to calculate what ##F_1## must be.
 
  • #8
I used the law of the lever on the wheel and axle and added this force to the gravitational force acting on ##m_1## (but I see now that this can't be right).

jbriggs444 said:
What you know is how m1 moves. You can use that to calculate what F1 must be.
Huh? That seems backwards to me. How would I know how ##m_1## moves without knowing ##F_1## first and calculate the acceleration out of that?

EDIT: Ah, I see. If there's no slack, ##m_1## obviously has to accelerate at the same rate as the blue rope.
 
Last edited:
  • Like
Likes jbriggs444
  • #9
greypilgrim said:
EDIT: Ah, I see. If there's no slack, m1 obviously has to accelerate at the same rate as the blue rope.
Yep.
 
  • #10
Things are not always as simple as they seem. When I see an analysis of the Indian Rope Trick, or a released balloon, I immediately fear the speed of sound in rope.
 
  • #11
Okay, that makes my initial question trivial. I was way too focused on finding the forces first to realize that the acceleration can be calculated right away.

So ##a_1=\frac{d_1}{d_2}g## and since ##F_1=m_1 a_1=m_1 g+T_r##, the tension in the red rope is
$$T_r=\frac{d_1}{d_2}m_1 g-m_1 g=\left(\frac{d_1}{d_2}-1\right)m_1 g\ .$$

However, now the law of the lever
$$T_r\cdot d_1=T_b\cdot d_2=m_2 g\cdot d_2$$
seems to fail completely. Is this an artifact of ##m_2\rightarrow\infty## or does that generally not hold for accelerated systems?
 
  • #12
greypilgrim said:
$$T_b\cdot d_2=m_2 g\cdot d_2$$
Since ##m_2## is accelerating there must be a net force on it, so ##T_b\neq m_2g##.
 
  • #13
greypilgrim said:
I used the law of the lever on the wheel and axle and added this force to the gravitational force acting on ##m_1## (but I see now that this can't be right).
Falling m2 pulls down on also falling m1 via the lever (mechanical advantage of d2/d1).
Therefore, m2 must accelerate at a rate lesser than g, while m1 must accelerate at a rate greater than g.

As the height difference between both masses decrease as they fall, the combined (m1+m2) center of mass must be descending at a value of acceleration that is within the range of values at which m1 and m2 are accelerating.

Falling masses pulley.jpg
 

Similar threads

  • Introductory Physics Homework Help
Replies
30
Views
2K
  • Introductory Physics Homework Help
Replies
13
Views
2K
  • Mechanics
Replies
1
Views
1K
  • Introductory Physics Homework Help
Replies
29
Views
1K
  • Introductory Physics Homework Help
Replies
5
Views
1K
Replies
31
Views
3K
  • Introductory Physics Homework Help
Replies
3
Views
420
  • Introductory Physics Homework Help
2
Replies
38
Views
2K
  • Introductory Physics Homework Help
Replies
3
Views
969
Replies
14
Views
3K
Back
Top