- #1
Ackbach
Gold Member
MHB
- 4,155
- 92
Originally posted by tracker10 on 2/2/2011.
If $\sin(A)+\sin(B)=x$ and $\cos(A)+\cos(B)=y$, then prove that
$$\sin(A+B)=\frac{2xy}{x^{2}+y^{2}}.$$
My solution:
$$ x= \sin(A)+ \sin(B)=2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right),$$ and similarly
$$ y= \cos(A)+ \cos(B)=2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right).$$
Therefore, we have that
$$\frac{2xy}{x^{2}+y^{2}}=\frac{8 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A+B}{2}\right) \cos^{2}\left(\frac{A-B}{2}\right)}{4 \sin^{2}\left(\frac{A+B}{2}\right) \cos^{2}\left(\frac{A-B}{2}\right)+4 \cos^{2}\left(\frac{A+B}{2}\right) \cos^{2}\left(\frac{A-B}{2}\right)}$$
$$=\frac{8 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A+B}{2}\right) \cos^{2}\left(\frac{A-B}{2}\right)}{4 \cos^{2}\left(\frac{A-B}{2}\right)}$$
$$=2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A+B}{2}\right)$$
$$= \sin(A+B).$$
QED.
If $\sin(A)+\sin(B)=x$ and $\cos(A)+\cos(B)=y$, then prove that
$$\sin(A+B)=\frac{2xy}{x^{2}+y^{2}}.$$
My solution:
$$ x= \sin(A)+ \sin(B)=2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right),$$ and similarly
$$ y= \cos(A)+ \cos(B)=2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right).$$
Therefore, we have that
$$\frac{2xy}{x^{2}+y^{2}}=\frac{8 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A+B}{2}\right) \cos^{2}\left(\frac{A-B}{2}\right)}{4 \sin^{2}\left(\frac{A+B}{2}\right) \cos^{2}\left(\frac{A-B}{2}\right)+4 \cos^{2}\left(\frac{A+B}{2}\right) \cos^{2}\left(\frac{A-B}{2}\right)}$$
$$=\frac{8 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A+B}{2}\right) \cos^{2}\left(\frac{A-B}{2}\right)}{4 \cos^{2}\left(\frac{A-B}{2}\right)}$$
$$=2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A+B}{2}\right)$$
$$= \sin(A+B).$$
QED.