- #1
Rumplestiltskin
- 97
- 3
Homework Statement
a)ii) Calculate the upward force F acting on Baumgartner at this point. (3 marks)
total mass of Baumgartner = 95 kg
g = 9.8 ms-2
b) Describe the shape of the graph between 30s and 70s. Explain the velocity changes in terms of changes in the air through which Baumgartner was falling. (3 marks)
c) It has been claimed that Baumgartner fell more than 35km in the 260 seconds before he opened the parachute. Use the graph to check whether this is correct. Show your method clearly. (3 marks)
Homework Equations
3. The Attempt at a Solution [/B]
Mostly just looking to check my answers and understand how an exam board would want c) answered.
a)i) U at t=20 is 200m/s.
V at t=40 is 340m/s.
(340 - 200) / 20 = 7 ms-2, QED.
a)ii) Hmm. Usually I'd do 95 * 9.8 = 931 N. But his acceleration at the point was around 7ms-2, so they could be trying to catch me out by giving me g here. I don't understand what the force would be contingent on. Doesn't free fall imply constant acceleration from g?
b) The shape is a negative parabola. Terminal velocity is reached at t ~~ 45, at which point he begins to decelerate due to increased atmospheric density and hence increased air resistance.
c) From t=0 to t=50 the curve roughly forms a triangle with the x-axis. 0.5*350*50 = 8750m.
From t=50 to t=150 a rough trapezium is formed. 100 * (350+80) / 2 = 21500m.
From t=150 to t=260 another rough trapezium is formed. 110 * (80+50) / 2 = 7150m.
8750 + 21500 + 7150 = 37400m = 37.4 km. The claim is correct. (Is this proper exam technique?)
Last edited: