- #1
Benindelft
- 12
- 0
[SOLVED] Fermi Dirac- missing something from Ashcroft derivation
Deriving Fermi Dirac function
following ashcroft all good up to equation 2.43 but then it does the folowing at 2.44
and I can't see how you reach 2.44.
as
(2.43) f_{i}^{N}= 1- sum(P_{N}(E_{alpha}^{N+1}-E_{i}) which is 'summation over all (N+1) electron states alpha in which there is an electron in the one electron level i)
Then because
P_{N} (E)= exp(-(E-F_{N})/kT)
We may write
(2.44) P_{N}(E_{alpha}^{N+1}- E_{i})=exp((E_{i}-u)/kt)P_{N+1}(E_{alpha}^{N+1})
as u=F_{N+1}-F_{N}
I tried just subbing in but I am missing some important point and end up with rubbish...
Homework Statement
Deriving Fermi Dirac function
following ashcroft all good up to equation 2.43 but then it does the folowing at 2.44
and I can't see how you reach 2.44.
Homework Equations
as
(2.43) f_{i}^{N}= 1- sum(P_{N}(E_{alpha}^{N+1}-E_{i}) which is 'summation over all (N+1) electron states alpha in which there is an electron in the one electron level i)
Then because
P_{N} (E)= exp(-(E-F_{N})/kT)
We may write
(2.44) P_{N}(E_{alpha}^{N+1}- E_{i})=exp((E_{i}-u)/kt)P_{N+1}(E_{alpha}^{N+1})
as u=F_{N+1}-F_{N}
The Attempt at a Solution
I tried just subbing in but I am missing some important point and end up with rubbish...