- #1
fluffertoes
- 16
- 0
HELP!
Donna is riding a 100 foot diameter Ferris Wheel with a center located 55 feet above the ground. Assume the center of the ferris wheel is on the y-axis, and that the ferris wheel turns 1 revolution every 20 seconds in the clockwise direction.
a. Write parametric equations to model Donna's motion at any time if she is at the bottom of the wheel at time t=0.
So here, I found my two equations, please check to see if they are correct!
x(t)= 50Sin(pi*t)/10)
y(t)= 50Cos(pi*t)/10) + 55b. What would Donna's position (x,y) be after 36 seconds?
I inputted 36 as t in the above equations and solved. I ended up with (-47.553, 70.451). Are both of my answers here (the equations and the coordinates at the time t=36) correct?
Donna is riding a 100 foot diameter Ferris Wheel with a center located 55 feet above the ground. Assume the center of the ferris wheel is on the y-axis, and that the ferris wheel turns 1 revolution every 20 seconds in the clockwise direction.
a. Write parametric equations to model Donna's motion at any time if she is at the bottom of the wheel at time t=0.
So here, I found my two equations, please check to see if they are correct!
x(t)= 50Sin(pi*t)/10)
y(t)= 50Cos(pi*t)/10) + 55b. What would Donna's position (x,y) be after 36 seconds?
I inputted 36 as t in the above equations and solved. I ended up with (-47.553, 70.451). Are both of my answers here (the equations and the coordinates at the time t=36) correct?