Feynman's lectures: Newton’s Laws of Dynamics

  • #1
YanaFFF
4
3
TL;DR Summary
Please help me figure out equations 9.13, 9.14, 9.15 from the Feynman lectures on physics (Volume 1, Chapter 9). I don't really understand what exactly these functions mean and also why they need to be added or subtracted. (Explain as simply as possible). I will be very grateful for your help!
Physics news on Phys.org
  • #2
It is hard to explain things better than Feynman :smile:

For eq. (9.13), if the velocity was constant, then
$$
x(t+\epsilon) = x(t) + \epsilon v_x
$$
would be exact, as the displacement in ##x## is time elapsed (##\epsilon##) multiplied by velocity (##v_x##). Since velocity depends on time, it is only an approximation; the smaller ##\epsilon##, the better.

Eq. (9.14), is the same, but for velocity in terms of acceleration. Eq. (9.15) follows from the fact that in this case acceleration is ##-x##, see eq. (9.12).
 
  • Like
Likes YanaFFF
  • #3
DrClaude said:
It is hard to explain things better than Feynman :smile:

For eq. (9.13), if the velocity was constant, then
$$
x(t+\epsilon) = x(t) + \epsilon v_x
$$
would be exact, as the displacement in ##x## is time elapsed (##\epsilon##) multiplied by velocity (##v_x##). Since velocity depends on time, it is only an approximation; the smaller ##\epsilon##, the better.

Eq. (9.14), is the same, but for velocity in terms of acceleration. Eq. (9.15) follows from the fact that in this case acceleration is ##-x##, see eq. (9.12).
Thank you very much! I agree that Feynman explains it well, but I still have gaps in my knowledge.
 
  • Like
Likes DrClaude
Back
Top