- #1
Buffu
- 849
- 146
Homework Statement
A charge ##Q## is distributed unifromly around a thin ring of radius ##b## which lies in ##xy## plane with its centre at the origin. Locate the point on the positive ##z## axis where the electric field is strongest ?
Homework Equations
The Attempt at a Solution
##\displaystyle d\vec E = {dQ \over b^2 + r^2 }\cos \alpha##. ##r## is the distance between the point, ##\alpha## is the angle between ##z## axis and the displacement vector , and the ring along ##z## axis.
##\displaystyle d\vec E = {\lambda dl \over b^2 + r^2 } \cos \alpha = d\vec E = {\lambda bd\theta \over b^2 + r^2 } \cos \alpha##.
Using ##\displaystyle \cos \alpha = {r \over \sqrt{b^2 + r^2}}##.
##\displaystyle E = {br\lambda \over (b^2 + r^2)^{3/2} } \int^{2\pi}_{0} d\theta = {2\pi br\lambda \over (b^2 + r^2)^{3/2} }##
Since ##\displaystyle \lambda = {Q\over 2\pi b}##,
I get,
##\displaystyle E = {Qr \over (b^2 + r^2)^{3/2}}##
Which has a maximum ##\displaystyle r = {2\over 3\sqrt{3}b^2}##.
Am I correct ?
Last edited: