- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $p$ be an odd prime number. We set $a=Re \left (e^{\frac{2\pi i}{p}}\right )$.
Show that:
1) $$\mathbb{Q}(a)\leq \mathbb{Q}(e^{\frac{2\pi i}{p}}) \text{ and } \left [\mathbb{Q} \left (e^{\frac{2\pi i}{p}} \right ):\mathbb{Q}(a)\right ]=2$$
2) $$[\mathbb{Q}(a):\mathbb{Q}]=\frac{p-1}{2}$$
1) To show that $ \mathbb{Q}(a)\leq \mathbb{Q} \left ( e^{\frac{2\pi i}{p}}\right ) $ we have to show that $a \in \mathbb{Q}(a) \Rightarrow a \in \mathbb{Q} \left (e^{\frac{2\pi i}{p}}\right ) $, right ??
$a = Re \left (e^{\frac{2\pi i}{p}}\right )=\frac{1}{2} \left ( e^{\frac{2\pi i}{p}}+\overline{e^{\frac{2\pi i}{p}}}\right )=\frac{1}{2} \left ( e^{\frac{2\pi i}{p}}+e^{\frac{-2\pi i}{p}}\right )=\frac{1}{2} \left ( e^{\frac{2\pi i}{p}}+\left( e^{\frac{2\pi i}{p}}\right )^{-1} \right ) \in \mathbb{Q} \left (e^{\frac{2\pi i}{p}}\right )$
Is this correct?? (Wondering)To find $ \left [\mathbb{Q}\left (e^{\frac{2\pi i}{p}}\right ):\mathbb{Q}(a)\right ]$ we have to find the degree of $Irr\left (e^{\frac{2 \pi I}{p}},\mathbb{Q}(a)\right )$, right?
But how could we do that?? (Wondering)2) How could we find $Irr(a,\mathbb{Q})$ ?? (Wondering)
Let $p$ be an odd prime number. We set $a=Re \left (e^{\frac{2\pi i}{p}}\right )$.
Show that:
1) $$\mathbb{Q}(a)\leq \mathbb{Q}(e^{\frac{2\pi i}{p}}) \text{ and } \left [\mathbb{Q} \left (e^{\frac{2\pi i}{p}} \right ):\mathbb{Q}(a)\right ]=2$$
2) $$[\mathbb{Q}(a):\mathbb{Q}]=\frac{p-1}{2}$$
1) To show that $ \mathbb{Q}(a)\leq \mathbb{Q} \left ( e^{\frac{2\pi i}{p}}\right ) $ we have to show that $a \in \mathbb{Q}(a) \Rightarrow a \in \mathbb{Q} \left (e^{\frac{2\pi i}{p}}\right ) $, right ??
$a = Re \left (e^{\frac{2\pi i}{p}}\right )=\frac{1}{2} \left ( e^{\frac{2\pi i}{p}}+\overline{e^{\frac{2\pi i}{p}}}\right )=\frac{1}{2} \left ( e^{\frac{2\pi i}{p}}+e^{\frac{-2\pi i}{p}}\right )=\frac{1}{2} \left ( e^{\frac{2\pi i}{p}}+\left( e^{\frac{2\pi i}{p}}\right )^{-1} \right ) \in \mathbb{Q} \left (e^{\frac{2\pi i}{p}}\right )$
Is this correct?? (Wondering)To find $ \left [\mathbb{Q}\left (e^{\frac{2\pi i}{p}}\right ):\mathbb{Q}(a)\right ]$ we have to find the degree of $Irr\left (e^{\frac{2 \pi I}{p}},\mathbb{Q}(a)\right )$, right?
But how could we do that?? (Wondering)2) How could we find $Irr(a,\mathbb{Q})$ ?? (Wondering)
Last edited by a moderator: