- #1
Math Amateur
Gold Member
MHB
- 3,998
- 48
------------------------------------------------------------------------------------------------
7. Prove that [TEX] \mathbb{Q} ( \sqrt{2} + \sqrt{3} ) = \mathbb{Q} ( \sqrt{2} , \sqrt{3} )[/TEX].
Conclude that [TEX] [\mathbb{Q} ( \sqrt{2} + \sqrt{3} ) \ : \ \mathbb{Q} ] = 4 [/TEX].
Find an irreducible polynomial satisfied by [TEX] \sqrt{2} + \sqrt{3} [/TEX]
--------------------------------------------------------------------------------------------------
I am somewhat overwhelmed by this problem ... can someone advise me on an approach ... and, indeed, get me started?
Peter
[This has also been posted on MHF]
7. Prove that [TEX] \mathbb{Q} ( \sqrt{2} + \sqrt{3} ) = \mathbb{Q} ( \sqrt{2} , \sqrt{3} )[/TEX].
Conclude that [TEX] [\mathbb{Q} ( \sqrt{2} + \sqrt{3} ) \ : \ \mathbb{Q} ] = 4 [/TEX].
Find an irreducible polynomial satisfied by [TEX] \sqrt{2} + \sqrt{3} [/TEX]
--------------------------------------------------------------------------------------------------
I am somewhat overwhelmed by this problem ... can someone advise me on an approach ... and, indeed, get me started?
Peter
[This has also been posted on MHF]