- #1
Math Amateur
Gold Member
MHB
- 3,998
- 48
xample 13 from Nicholson: Introduction to Abstract Algebra, Section 6.2, page 282 reads as follows: (see attachment)
------------------------------------------------------------------------------------------------------------------
Example 13: If [TEX] u = \sqrt[3]{2} [/TEX] show that [TEX] \mathbb{Q}(u) = \mathbb{Q}(u)^2 [/TEX]
------------------------------------------------------------------------------------------------------------------
The solution comes down to the following:
Given [TEX] \mathbb{Q}(u) \supseteq \mathbb{Q}(u)^2 \supseteq \mathbb{Q} [/TEX]
so [TEX] [ \mathbb{Q}(u) \ : \ \mathbb{Q}] = [ \mathbb{Q}(u) \ : \ \mathbb{Q}(u)^2] \ [ \mathbb{Q}(u)^2 \ : \ \mathbb{Q} ] [/TEX]
Now Nicholson shows that [TEX] [ \mathbb{Q}(u) \ : \ \mathbb{Q}] = 3 [/TEX] and [TEX] [ \mathbb{Q}(u)^2 \ : \ \mathbb{Q} ] = 3 [/TEX]
so [TEX] [ \mathbb{Q}(u) \ : \ \mathbb{Q}(u)^2] = 1 [/TEX]
Then Nicholson (I think) concludes that [TEX] \mathbb{Q}(u) = \mathbb{Q}(u)^2 [/TEX]
----------------------------------------------------------------------------------------------------------
My problem is as follows:
How (exactly) does it follow that:
[TEX] [ \mathbb{Q}(u) \ : \ \mathbb{Q}(u)^2] = 1 \Longrightarrow \mathbb{Q}(u) = \mathbb{Q}(u)^2 [/TEX]
Can someone help?
Peter
------------------------------------------------------------------------------------------------------------------
Example 13: If [TEX] u = \sqrt[3]{2} [/TEX] show that [TEX] \mathbb{Q}(u) = \mathbb{Q}(u)^2 [/TEX]
------------------------------------------------------------------------------------------------------------------
The solution comes down to the following:
Given [TEX] \mathbb{Q}(u) \supseteq \mathbb{Q}(u)^2 \supseteq \mathbb{Q} [/TEX]
so [TEX] [ \mathbb{Q}(u) \ : \ \mathbb{Q}] = [ \mathbb{Q}(u) \ : \ \mathbb{Q}(u)^2] \ [ \mathbb{Q}(u)^2 \ : \ \mathbb{Q} ] [/TEX]
Now Nicholson shows that [TEX] [ \mathbb{Q}(u) \ : \ \mathbb{Q}] = 3 [/TEX] and [TEX] [ \mathbb{Q}(u)^2 \ : \ \mathbb{Q} ] = 3 [/TEX]
so [TEX] [ \mathbb{Q}(u) \ : \ \mathbb{Q}(u)^2] = 1 [/TEX]
Then Nicholson (I think) concludes that [TEX] \mathbb{Q}(u) = \mathbb{Q}(u)^2 [/TEX]
----------------------------------------------------------------------------------------------------------
My problem is as follows:
How (exactly) does it follow that:
[TEX] [ \mathbb{Q}(u) \ : \ \mathbb{Q}(u)^2] = 1 \Longrightarrow \mathbb{Q}(u) = \mathbb{Q}(u)^2 [/TEX]
Can someone help?
Peter