- #1
Math Amateur
Gold Member
MHB
- 3,998
- 48
I am reading Nicholson: Introduction to Abstract Algebra Section 6.2 Algebraic Extensions.
On page 282 the Corollary to Theorem 5 states the following: (see attachment for Theorem 5 and the Corollary)
------------------------------------------------------------------------------------------------------------------------
Corollary. Let [TEX] E \supseteq F [/TEX] be fields and let [TEX] u \in E [/TEX] be algebraic over F .
If [TEX] v \in F(u) [/TEX], then v is also algebraic over F and [TEX] {deg}_F(v) [/TEX] divides [TEX] {deg}_F(u) [/TEX].
------------------------------------------------------------------------------------------------------------------------
The proof begins as follows:
" Proof. Here [TEX] F(u) \supseteq F(v) \supseteq F [/TEX] ... ... etc etcMy problem is as follows:
How do you show formally and explicitly that [TEX] F(u) \supseteq F(v) \supseteq F [/TEX]
Would appreciate some help.
Peter
On page 282 the Corollary to Theorem 5 states the following: (see attachment for Theorem 5 and the Corollary)
------------------------------------------------------------------------------------------------------------------------
Corollary. Let [TEX] E \supseteq F [/TEX] be fields and let [TEX] u \in E [/TEX] be algebraic over F .
If [TEX] v \in F(u) [/TEX], then v is also algebraic over F and [TEX] {deg}_F(v) [/TEX] divides [TEX] {deg}_F(u) [/TEX].
------------------------------------------------------------------------------------------------------------------------
The proof begins as follows:
" Proof. Here [TEX] F(u) \supseteq F(v) \supseteq F [/TEX] ... ... etc etcMy problem is as follows:
How do you show formally and explicitly that [TEX] F(u) \supseteq F(v) \supseteq F [/TEX]
Would appreciate some help.
Peter