- #1
craigthone
- 59
- 1
I am confused about the field transformation under conformal transformation. Consider the scale transformation of field ##\phi## (not necessarily scalar)
In CFT of Francesco et al, formula (2.121), the transformation is
$$ \vec{x}\rightarrow \vec{x}'=\lambda x,\,\,\,\phi(\vec{x}) \rightarrow \phi'(\lambda \vec{x}) =\lambda^{-\Delta}\phi(\vec{x})$$
In the AdS/CFT review of AGMOO https://arxiv.org/abs/hep-th/9905111, page 33, the transformation is
$$ x^{\mu}\rightarrow\lambda x^{\mu},\,\,\,\phi(x) \rightarrow \phi'(x) =\lambda^{\Delta}\phi(\lambda x)$$
Are these two kinds of transformation same and why?
In CFT of Francesco et al, formula (2.121), the transformation is
$$ \vec{x}\rightarrow \vec{x}'=\lambda x,\,\,\,\phi(\vec{x}) \rightarrow \phi'(\lambda \vec{x}) =\lambda^{-\Delta}\phi(\vec{x})$$
In the AdS/CFT review of AGMOO https://arxiv.org/abs/hep-th/9905111, page 33, the transformation is
$$ x^{\mu}\rightarrow\lambda x^{\mu},\,\,\,\phi(x) \rightarrow \phi'(x) =\lambda^{\Delta}\phi(\lambda x)$$
Are these two kinds of transformation same and why?