Field transformations in the z-direction

In summary, the conversation discusses the derivation of a general rule for electric and magnetic fields in different configurations. The summary includes equations and conclusions from different configurations and mentions a possible mistake in the first solution. The conversation also mentions the use of Purcell's book for further understanding and addresses the issue of "bumping" a thread on a forum.
  • #1
milkism
118
15
Homework Statement
Transformation rules fot the fields in a lorentz boost in the z-direction.
Relevant Equations
Look at attempt at a solution.
Question:
a92d04b1243ab6c9802934154fe4e0ae.png

Eq. 12.109:
33868d705d5e28c81cc2daef8d6e588c.png

My solution:
We’ll first use the configuration from figure 12.35 in the book Griffiths. Where the only difference is
that v_0 is in the z-direction. The electric field in the y-direction will be the same.
925feeb890c8afb2e4c319557ca08444.png

$$E_y = \frac{\sigma}{\epsilon _0}$$
Now we're going to derive the general rule, following just like how it's done in the book Griffiths. The surface current will look like:
$$\mathbf{K_{\pm}}=\mp \sigma v_0 \hat{\mathbf{z}}$$
By the right-hand rule the field would point in the positive x direction, with the magnitude as:
$$B_x = \mu_0 \sigma v_0.$$
The third system $\overline{S}$, would ofcourse travel in the z direction instead of the x direction.
f7128b619f806d8bcb933a7831d4a6fb.png

af11917b4a0e08f22b686f0c05de4228.png

The fields will look like:
$$ \overline{E_y} = \frac{\overline{\sigma}}{\epsilon _0}$$
$$\overline{B_x} = \mu_0 \overline{\sigma} \overline{v_0}$$
Now we just need to express $\overline{\mathbf{E}}$ and $\overline{\mathbf{B}}$ in terms of $\mathbf{E}$ and $\mathbf{B}$.
We will use the same equations 12.98, 12.99, 12.101 and 12.102 to do the algebra because they didn't change.
$$\overline{E_y} = \gamma \left( E_y + vB_x \right)$$
$$\overline{B_x} = \gamma \left( B_x + \frac{v}{c^2}E_y \right)$$
To find $E_x$ and $B_y$, the configuration will be identical to figure 12.36.
385902a1c79e27be8458eb9a4e8b1d3a.png


The fields in $S$ will be as follows:
$$E_x = \frac{\sigma}{\epsilon_0}$$
$$B_y = \sigma \mu_0 v_0$$
The fields in $\overline{S}$ will look like:
$$\overline{E_x} = \gamma \left( E_x + vB_y \right)$$
$$\overline{B_y} = \gamma \left( B_y + \frac{v}{c^2}E_x \right)$$
For the z component of the electric fields will be same and for the magnetic will also be the same, if we take a solenoid parallel to the z-axis.
d8daac75f9e635809bf16b6a26712202.png
But the solenoid being on the z-axis.
$$\overline{B_z} = B_z$$
$$\overline{E_z} = E_z$$
I'm not exactly sure if I'm right, because it all depends if your configuration is correct.
 
Physics news on Phys.org
  • #2
Trying reading Purcell's as a complement. It uses SR to introduce E&M.
 
Last edited by a moderator:
  • #3
ChiralSuperfields said:
Trying reading Purcell's as a complement. It uses SR to introduce E&M.
Can't find anything about field transformations in his book, can you point out what I did wrong?
 
  • #4
Okay I have tried to do it with different configurations.
New solution:
1680354446217.jpeg

At configuration 1 (top configuration), I concluded the following:
$$E_y = \frac{\sigma}{\epsilon _0}$$
$$\mathbf{K_{\pm}} = \pm \sigma v_0 \mathbf{\hat{z}}$$
$$B_x = -\mu _0 \sigma v_0$$
$$\overline{E_y} = \gamma \left( E_y - vB_x \right)$$
$$\overline{B_x} = \gamma \left( B_x - \frac{v}{c^2} E_y \right)$$
At configuration 2 (middle left), I concluded the following:
$$\overline{E_z}=E_z$$
At configuration 3 (bottom left), I concluded the following:
$$\overline{B_z} = B_z$$
At configuration 4 (bottom right), I concluded the following:
$$E_x = \frac{\sigma}{\epsilon_0}$$
$$B_y = \mu _0 \sigma v_0$$
$$\overline{E_x} = \gamma \left( E_x + vB_y \right)$$
$$\overline{B_y} = \gamma \left( B_y + \frac{v}{c^2} E_x \right)$$

Personal questions:
Since in griffiths they have boosted at a negative x directio, should I also have boosted in a negative z direction?
I think my second solution is more correct than my first one.
 
  • #5
milkism said:
Can't find anything about field transformations in his book, can you point out what I did wrong?
Sorry I have only read a bit of purcell's so I am not up to that level yet.
 
  • #7
The transformations in the second solution are correct, but indeed you should have moved the capacitor in the negative z-direction because this corresponds to you moving in the positive z-direction relative to the rest of space and thus a positive boost in the z-direction.
 
  • #8
Note: this just means changing the sign in front of v.
 

FAQ: Field transformations in the z-direction

What are field transformations in the z-direction?

Field transformations in the z-direction refer to the mathematical and physical processes used to change the representation of vector fields, such as electric or magnetic fields, along the z-axis in a three-dimensional coordinate system. These transformations are essential in understanding how fields behave under various conditions, such as changes in reference frames or during interactions with matter.

Why are field transformations in the z-direction important?

Field transformations in the z-direction are important because they allow scientists and engineers to analyze and predict the behavior of fields in different contexts, such as in electromagnetic theory, fluid dynamics, and materials science. Understanding these transformations can lead to better designs in technology, improved simulations, and more accurate predictions of physical phenomena.

What mathematical tools are used for z-direction field transformations?

Mathematical tools used for z-direction field transformations include vector calculus, coordinate transformations, and tensor analysis. Techniques such as the use of gradient, divergence, and curl operators, as well as transformation equations like Lorentz transformations in the context of relativity, are commonly employed to facilitate these transformations.

How do field transformations in the z-direction affect physical systems?

Field transformations in the z-direction can significantly affect physical systems by altering the way fields interact with objects and other fields. For example, a change in the orientation of an electric field can influence the motion of charged particles, while transformations in a magnetic field can affect the behavior of conductive materials. Understanding these effects is crucial for applications in engineering and physics.

Can you provide an example of a z-direction field transformation?

An example of a z-direction field transformation is the conversion of a static electric field described in Cartesian coordinates to cylindrical coordinates, where the z-axis is the axis of symmetry. This transformation helps to simplify calculations in systems with cylindrical geometries, such as wires or tubes, making it easier to analyze the field distribution and potential energy in those systems.

Back
Top