- #1
marjine
- 10
- 1
- Homework Statement
- A space station has the form of a hoop of
radius R = 15 m, with mass M = 1000 kg.
Initially its center of mass is not moving, but
it is spinning with angular speed ωi = 4 rad/s.
A small package of mass m = 19 kg is thrown
at high velocity by a spring-loaded gun at an
angle θ = 19 ◦
toward a nearby spacecraft
as shown. The package has a speed v =
310 m/s after launch. What is the space
station’s rotational speed ωf after the launch?
You may ignore the mass of the package in
calculating the moment of inertia of the space
station.
Answer in units of rad/s.
- Relevant Equations
- Conservation of angular momentum: Lf=Li
Rotational angular momentum: Iω
Translational angular momentum: mvrsinθ
Li = Lrf +Ltf
Iωo = Iωf + mvRsinθ
I = MR^2
(MR^2)ωo = (MR^2)ωf + mvRsinθ
ωf = (MR^2ωo -mvRsinθ)/MR^2 = 3.99
Iωo = Iωf + mvRsinθ
I = MR^2
(MR^2)ωo = (MR^2)ωf + mvRsinθ
ωf = (MR^2ωo -mvRsinθ)/MR^2 = 3.99