- #1
Dethrone
- 717
- 0
Find a basis for $U=\text{span}{}\left\{\begin{bmatrix}1\\1\\0\\0\end{bmatrix}\begin{bmatrix}0\\0\\1\\1\end{bmatrix}\begin{bmatrix}1\\0\\1\\0\end{bmatrix}\begin{bmatrix}0\\1\\0\\1\end{bmatrix}\right\}$
Let $U=\text{col}(A)$, and applying row reduction on A, we obtain $\text{rref}(A)=\left[\begin{array}{1,0,0,1,5,3,2}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{array}\right]$.
Since the first, second, and third columns are columns with leading ones, then those corresponding columns of $A$ should form a basis for $A$, namely:
${}\left\{\begin{bmatrix}1\\1\\0\\0\end{bmatrix}\begin{bmatrix}0\\0\\1\\0\end{bmatrix}\begin{bmatrix}1\\0\\1\\0\end{bmatrix}\right\}$
But the answer uses the first, second, and fourth column, why?
Let $U=\text{col}(A)$, and applying row reduction on A, we obtain $\text{rref}(A)=\left[\begin{array}{1,0,0,1,5,3,2}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{array}\right]$.
Since the first, second, and third columns are columns with leading ones, then those corresponding columns of $A$ should form a basis for $A$, namely:
${}\left\{\begin{bmatrix}1\\1\\0\\0\end{bmatrix}\begin{bmatrix}0\\0\\1\\0\end{bmatrix}\begin{bmatrix}1\\0\\1\\0\end{bmatrix}\right\}$
But the answer uses the first, second, and fourth column, why?
Last edited: