- #1
Lemoine
- 1
- 0
Let △ABC be a triangle. Let AD and CE be its internal bisectors, with D lying on BC and E lying on AB. Given that ∠CED=18° and ∠ADE=24°, how can I find angles ∠A and ∠C without aid of softwares? Angle ∠B is easy to calculate, as
∠CED+∠ADE=∠CAD+∠ACE=∠A+∠C2=180°−∠B2
42°=180°−∠B2
∠B=96°
The other angles are difficult to calculate. I made this construction on Geogebra and got ∠A=12° and ∠C=72°(exactly), but I'm not being able to find them by geometric constructions. A teacher suggested me to drop perpendiculars from E to AD and from D to CE. Let E′ be the reflection of E over AD and D′ be the reflection of D over CE. Both D′ and E′ lie on AC, as AD bisects EE′ and CE bisects DD′.
What I found:
∠CED′=18°
∠ADE′=24°
∠DEE′=∠DE′E=90°−24°=66°
∠EDD′=∠ED′D=90°−18°=72°
∠E′ED′=66°−2⋅18°=30°
∠D′DE′=72°−2⋅24°=24°
∠CED+∠ADE=∠CAD+∠ACE=∠A+∠C2=180°−∠B2
42°=180°−∠B2
∠B=96°
The other angles are difficult to calculate. I made this construction on Geogebra and got ∠A=12° and ∠C=72°(exactly), but I'm not being able to find them by geometric constructions. A teacher suggested me to drop perpendiculars from E to AD and from D to CE. Let E′ be the reflection of E over AD and D′ be the reflection of D over CE. Both D′ and E′ lie on AC, as AD bisects EE′ and CE bisects DD′.
What I found:
∠CED′=18°
∠ADE′=24°
∠DEE′=∠DE′E=90°−24°=66°
∠EDD′=∠ED′D=90°−18°=72°
∠E′ED′=66°−2⋅18°=30°
∠D′DE′=72°−2⋅24°=24°