- #1
alexmahone
- 304
- 0
Find a closed-form expression for $f(n)$ where
$f(n)=1+n+n(n-1)+n(n-1)(n-2)+...+n(n-1)\cdots2$ for $n>1$
and $f(1)=1$.
(So, $f(2)=1+2=3$
$f(3)=1+3+3\cdot 2=10$
$f(4)=1+4+4\cdot 3+4\cdot 3\cdot 2=41$
and so on.)
$f(n)=1+n+n(n-1)+n(n-1)(n-2)+...+n(n-1)\cdots2$ for $n>1$
and $f(1)=1$.
(So, $f(2)=1+2=3$
$f(3)=1+3+3\cdot 2=10$
$f(4)=1+4+4\cdot 3+4\cdot 3\cdot 2=41$
and so on.)