- #1
etchzel
- 1
- 0
Homework Statement
An object is moving in x-axis with given force [itex]Fx = -mω^{2}x[/itex], where ω is a positive constant. when t = 0 the object starts moving from point [itex]x_{0} > 0[/itex].
a. Find the object's velocity function relative to x ([itex]v(x)[/itex])
b. Find the object's position function relative to t ([itex]x(t)[/itex])
Help: [itex]\int\frac{dz}{\sqrt{A^{2} - z^{2}}}[/itex] perform the integration by changing z = A cos u
(I don't know what this help thing for though, I find it irrelevant to the question )
Homework Equations
The Attempt at a Solution
a. First, using the above-mentioned force equation, I found the acceleration function relative to x, it goes like:
[itex]Fx = -mω^{2}x[/itex]
[itex]ma(x) = -mω^{2}x[/itex]
[itex]a(x) = -ω^{2}x[/itex]
[itex]ma(x) = -mω^{2}x[/itex]
[itex]a(x) = -ω^{2}x[/itex]
then, since [itex]a(x) = \frac{v(x)}{dt}[/itex], by using chain rule, it goes:
[itex]a(x) = \frac{v(x)}{dx}\frac{dx}{dt}[/itex]
[itex]a(x) dx = v(t) dv(x)[/itex]
[itex]a(x) dx = v(t) dv(x)[/itex]
assuming that v(t) = v(x) (even though the function might be different, the result will be the same either way) then:
[itex]a(x) dx = v(x) dv(x)[/itex]
[itex]\int a(x) dx = \int v(x) dv(x)[/itex]
[itex]-\frac{1}{2}ω^{2}x^{2} + C = \frac{v(x)^{2}}{2} + C[/itex]
[itex]v(x) = \sqrt{-1}ωx[/itex]
[itex]\int a(x) dx = \int v(x) dv(x)[/itex]
[itex]-\frac{1}{2}ω^{2}x^{2} + C = \frac{v(x)^{2}}{2} + C[/itex]
[itex]v(x) = \sqrt{-1}ωx[/itex]
there goes my attempt for part a, and I'm not even sure if it was correct, that [itex]\sqrt{-1}[/itex] part is throwing me off
for part b, my last-moment attempt goes like this:
[itex]v(t) = \int a(x) dt[/itex]
[itex]v(t) = -ω^{2}xt + C[/itex]
when t = 0, the object is at rest, then v(0) = 0, and when t = 0, [itex]x = x_{0}[/itex]
[itex]0 = -ω^{2}x_{0}(0) + C ==> C = 0[/itex]
[itex]v(t) = -ω^{2}xt[/itex]
[itex]v(t) = -ω^{2}xt[/itex]
then using integral to find x(t):
[itex]x(t) = \int v(t) dt[/itex]
[itex]x(t) = \frac{-ω^{2}x_{0}t^{2}}{2} + C[/itex]
[itex]x(t) = \frac{-ω^{2}x_{0}t^{2}}{2} + C[/itex]
when t = 0,
[itex]x_{0} = \frac{-ω^{2}x_{0}(0)^{2}}{2} + C ==> C = 0[/itex]
[itex]x(t) = \frac{-ω^{2}xt^{2}}{2} + x_{0}[/itex]
[itex]x(t) = \frac{-ω^{2}xt^{2}}{2} + x_{0}[/itex]
-----------------------------
pretty sure I was wrong for part b :s
can someone give me a hint on how to solve this problem?
any help is much appreciated, thanks!