- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
For which real constants $a,b,c$ is the following function $f$ continuous on $\mathbb{R}$ ?
$$f(x)=\begin{cases}1+x^2 & \text{ for } x\leq 1, \\ ax-x^3 & \text{ for } 1<x< 2 \\ b & \text{ for } x=2\\ cx^2 & \text{ for } x>2\end{cases}$$
For $a=1, b=-6, c=-\frac{3}{2}$ the function $f$ is discontinuous at $x_0=1$. Are there continuous functions $g:\mathbb{R}\rightarrow \mathbb{R}$, such that $f\circ g$ or $g\circ f$ is continuous on whole $\mathbb{R}$ ?
We have to check the continuity at the points $x=1$ and $x=2$.
We consider the point $x=1$:
We have that $\lim_{x\rightarrow 1^-}f(x)=\lim_{x\rightarrow 1^-}(1+x^2)=2$, $\lim_{x\rightarrow 1^+}f(x)=\lim_{x\rightarrow 1^+}(ax-x^3)=a-1$ and $f(1)=1+1^2=2$.
So that the function is continuous at $x=1$ it must hold $a-1=2\Rightarrow a=3$.
We consider the point $x=2$:
We have that $\lim_{x\rightarrow 2^-}f(x)\overset{ a=3 }{ = } \lim_{x\rightarrow 2^-}(3x-x^3)=6-8=-2$, $\lim_{x\rightarrow 2^+}f(x)=\lim_{x\rightarrow 2^+}(cx^2)=4c$ and $f(2)=b$.
So that the function is continuous at $x=2$ it must hold $-2=4c=b$. So we get $b=-2$ and $c=-\frac{1}{2}$.
Is everything correct?
For $a=1, b=-6, c=-\frac{3}{2}$ we get the function $$f(x)=\begin{cases}1+x^2 & \text{ for } x\leq 1, \\ x-x^3 & \text{ for } 1<x< 2 \\ -6 & \text{ for } x=2\\ -\frac{3}{2}x^2 & \text{ for } x>2\end{cases}$$
How can we find (or check if there exist) continuous functions $g$ such that $f\circ g$ or $g\circ f$ is continuous on whole $\mathbb{R}$ ?
For which real constants $a,b,c$ is the following function $f$ continuous on $\mathbb{R}$ ?
$$f(x)=\begin{cases}1+x^2 & \text{ for } x\leq 1, \\ ax-x^3 & \text{ for } 1<x< 2 \\ b & \text{ for } x=2\\ cx^2 & \text{ for } x>2\end{cases}$$
For $a=1, b=-6, c=-\frac{3}{2}$ the function $f$ is discontinuous at $x_0=1$. Are there continuous functions $g:\mathbb{R}\rightarrow \mathbb{R}$, such that $f\circ g$ or $g\circ f$ is continuous on whole $\mathbb{R}$ ?
We have to check the continuity at the points $x=1$ and $x=2$.
We consider the point $x=1$:
We have that $\lim_{x\rightarrow 1^-}f(x)=\lim_{x\rightarrow 1^-}(1+x^2)=2$, $\lim_{x\rightarrow 1^+}f(x)=\lim_{x\rightarrow 1^+}(ax-x^3)=a-1$ and $f(1)=1+1^2=2$.
So that the function is continuous at $x=1$ it must hold $a-1=2\Rightarrow a=3$.
We consider the point $x=2$:
We have that $\lim_{x\rightarrow 2^-}f(x)\overset{ a=3 }{ = } \lim_{x\rightarrow 2^-}(3x-x^3)=6-8=-2$, $\lim_{x\rightarrow 2^+}f(x)=\lim_{x\rightarrow 2^+}(cx^2)=4c$ and $f(2)=b$.
So that the function is continuous at $x=2$ it must hold $-2=4c=b$. So we get $b=-2$ and $c=-\frac{1}{2}$.
Is everything correct?
For $a=1, b=-6, c=-\frac{3}{2}$ we get the function $$f(x)=\begin{cases}1+x^2 & \text{ for } x\leq 1, \\ x-x^3 & \text{ for } 1<x< 2 \\ -6 & \text{ for } x=2\\ -\frac{3}{2}x^2 & \text{ for } x>2\end{cases}$$
How can we find (or check if there exist) continuous functions $g$ such that $f\circ g$ or $g\circ f$ is continuous on whole $\mathbb{R}$ ?