- #1
mateomy
- 307
- 0
Find a set of vectors in [itex]\mathbb{R}^3[/itex] that spans the subspace
[tex]
S\,=\,\{\,u\,\in\,\mathbb{R}^3\,|\,u\cdot v\,=\,0\,\}
[/tex]
where v=<1,2,3>
Maybe 12 hours of studying is too much and I'm fried or, maybe I'm looking for excuses. Either way...
To solve this I'm trying to set up a matrix multiplication and augment it at zero. But, I just get a single linear equation which tells me that the only way I can have a span of this subspace is if my other vector is the zero vector <0,0,0>. I don't think that's right.
[tex]
\begin{bmatrix}
a & b & c
\end{bmatrix}
*
\begin{bmatrix}
1\\2\\3
\end{bmatrix}
=
\mathbf{0}
[/tex]
Getting [itex]a+2b+3c=0[/itex]
Where's my issue?
Thanks.
[tex]
S\,=\,\{\,u\,\in\,\mathbb{R}^3\,|\,u\cdot v\,=\,0\,\}
[/tex]
where v=<1,2,3>
Maybe 12 hours of studying is too much and I'm fried or, maybe I'm looking for excuses. Either way...
To solve this I'm trying to set up a matrix multiplication and augment it at zero. But, I just get a single linear equation which tells me that the only way I can have a span of this subspace is if my other vector is the zero vector <0,0,0>. I don't think that's right.
[tex]
\begin{bmatrix}
a & b & c
\end{bmatrix}
*
\begin{bmatrix}
1\\2\\3
\end{bmatrix}
=
\mathbf{0}
[/tex]
Getting [itex]a+2b+3c=0[/itex]
Where's my issue?
Thanks.