- #1
icystrike
- 445
- 1
Homework Statement
I've posted it many months ago.. now i manage to get the answer but I am wondering if anyone has a shorter solution?
The question goes like this(without a single omission):
Let f(x)=[itex]a_0+a_1x+a_2x^2+...+a_nx^n[/itex] ,where [itex]a_0,a_1,a_2,...,a_n[/itex]
are nonnegative integers. If f(1)=8 and f(35)=[itex]6^6[/itex] , find f(7).
Answer is 512.
Homework Equations
The Attempt at a Solution
Given [tex]a_{i}[/tex] is nonnegative , it can be 0 ,1 ,2 ,3 , ... , 7
Since [tex]35^{4}>6^{6}[/tex],
[tex]a_{4},a_{5},a_{6}... = 0[/tex]
[tex]f(35)=6^{6} \equiv1 mod(35)[/tex] by fermat's little theorem.
[tex]a_0 =1[/tex]
[tex]a_3=0 or 1 \because 2\times35^3 > 6^6[/tex]
therefore ,
[tex]a_1 + a_2 = 7 (rej \because a_2 > 38)[/tex]
or
[tex]a_1 + a_2 =6[/tex]
Hence, we can have a two by two simultaneous eqn:
[tex]a_1 + a_2 = 6[/tex]
[tex]35a_1 + 35^2 a_2 =3780[/tex]
[tex]a_1=3 ,a_2=3[/tex]
therefore , [tex]f(7)=1+3\times7+3\times7^{2}+7^{3}=512[/tex]
Last edited: