- #1
Kiefer
- 6
- 0
For the following matrix A, find a unitary matrix U such that U*AU is diagonal:
A =
1 2 2 2
2 1 2 2
2 2 1 2
2 2 2 1
I found the eigenvalues to be -1,-1,-1,7
and the eigenvectors to be (v1)=(-1,1,0,0),(v2)=(-1,0,1,0),(v3)=(-1,0,0,1),(v4)=(1,1,1,1)
Normalize these vectors: ||(v1)||=sqrt(2),||(v2)||=sqrt(2), ||(v3)||=sqrt(2), ||(v4)||=2
So a unitary matrix is
U=
1/sqrt(2) -1/sqrt(2) -1/sqrt(2) -1/sqrt(2)
1/sqrt(2) 0 0 1/2
0 1/sqrt(2) 0 1/2
0 0 1/sqrt(2) 1/2
But this does not satisfy U*AU is diagonal, so I'm thinking I want to change the order of the vectors. But how do I know which one is satisfies the condition? (trial and error is rather tedious)
A =
1 2 2 2
2 1 2 2
2 2 1 2
2 2 2 1
I found the eigenvalues to be -1,-1,-1,7
and the eigenvectors to be (v1)=(-1,1,0,0),(v2)=(-1,0,1,0),(v3)=(-1,0,0,1),(v4)=(1,1,1,1)
Normalize these vectors: ||(v1)||=sqrt(2),||(v2)||=sqrt(2), ||(v3)||=sqrt(2), ||(v4)||=2
So a unitary matrix is
U=
1/sqrt(2) -1/sqrt(2) -1/sqrt(2) -1/sqrt(2)
1/sqrt(2) 0 0 1/2
0 1/sqrt(2) 0 1/2
0 0 1/sqrt(2) 1/2
But this does not satisfy U*AU is diagonal, so I'm thinking I want to change the order of the vectors. But how do I know which one is satisfies the condition? (trial and error is rather tedious)