- #36
pyroknife
- 613
- 4
Yes, so for (a,e) = (##cos(\theta)##, ##sin(\theta)##)LCKurtz said:Yes. You're getting close. You have ##(a,e) = (\cos \theta, \sin\theta)## for the point at angle ##\theta##. So for the point ##(b,f)## at angle ##\theta +\pi / 2## you have ##(b,f) = (\cos(\theta+\frac \pi 2), --)## (you need the ##y## coordinate too).
Then do the same thing for ##(b,f)## at ##\theta - \pi /2##.
Then you will want to simplify your ##(b,f)## expressions and you will be able to fill in your matrix. What you should find interesting is that when you complete your conversation with Ray you should have the exact same answers.
(b,f) can be either (##cos(\theta+\pi/2)##, ##sin(\theta+\pi/2)##)
or
(##cos(\theta-\pi/2)##, ##sin(\theta-\pi/2)##)
So for the chosen (a,e), we can have 2 sets of (b,f).
Back to one of my earlier questions.
Couldn't (a,e) ALSO be any of the following 7:
1) (a,e) = (##cos(\theta)##, ##-sin(\theta)##)
2) (a,e) = (##-cos(\theta)##, ##sin(\theta)##)
3) (a,e) = (##-cos(\theta)##, ##-sin(\theta)##)
4) (a,e) = (##sin(\theta)##,##cos(\theta)##)
5) (a,e) = (##-sin(\theta)##,##-cos(\theta)##)
6) (a,e) = (##-sin(\theta)##,##cos(\theta)##)
7) (a,e) = (##sin(\theta)##,##-cos(\theta)##)