- #1
Math100
- 802
- 222
- Homework Statement
- Find all pairs of primes ## p ## and ## q ## satisfying ## p-q=3 ##.
- Relevant Equations
- None.
Proof:
Let ## p ## and ## q ## be primes such that ## p-q=3 ##.
Now we consider two cases.
Case #1: Suppose ## p ## is an even prime.
Then ## p=2 ##, because ## 2 ## is the only even prime.
Thus ## 2-q=3 ##, so ## q=-1 ##,
which contradicts the fact that ## q ## is prime.
Case #2: Suppose ## p ## is an odd prime.
Then ## p=2k+1 ## for some ## k\in\mathbb{N} ##.
Thus ## 2k+1=q+3 ##
## q=2k+1-3 ##
## =2k-2 ##
## =2(k-1) ##.
This means ## q ## is an even prime.
Now we have ## p-2=3 ##, so ## p=5 ##.
Therefore, the pair of primes ## p ## and ## q ## satisfying ## p-q=3 ## is ## (p, q)=(5, 2) ##.
Let ## p ## and ## q ## be primes such that ## p-q=3 ##.
Now we consider two cases.
Case #1: Suppose ## p ## is an even prime.
Then ## p=2 ##, because ## 2 ## is the only even prime.
Thus ## 2-q=3 ##, so ## q=-1 ##,
which contradicts the fact that ## q ## is prime.
Case #2: Suppose ## p ## is an odd prime.
Then ## p=2k+1 ## for some ## k\in\mathbb{N} ##.
Thus ## 2k+1=q+3 ##
## q=2k+1-3 ##
## =2k-2 ##
## =2(k-1) ##.
This means ## q ## is an even prime.
Now we have ## p-2=3 ##, so ## p=5 ##.
Therefore, the pair of primes ## p ## and ## q ## satisfying ## p-q=3 ## is ## (p, q)=(5, 2) ##.