- #1
BurpHa
- 47
- 14
- Homework Statement
- Find the exact solutions of ##x ^ 3 + 2 = 0##
- Relevant Equations
- ##x = \frac {-b \pm \sqrt {b ^ 2 - 4ac}} {2a}##
I actually know one way to solve,
##x ^ 3 + 2 = 0##
##x ^ 3 + \left (\sqrt[3] 2\right) ^ 3 = 0##
##\left(x + \sqrt[3] 2\right) \left(x ^ 2 - x\sqrt[3] 2 + \left(\sqrt[3] 2 \right)^2\right) =0##
##x + \sqrt[3] 2 = 0, x = -\sqrt[3] 2##
##x ^ 2 - x\sqrt[3] 2 + \left(\sqrt[3] 2\right)^2 = 0, x = \frac {\sqrt[3] 2} {2} \pm \frac {\sqrt[3] 2 \sqrt 3 } {2}i##
So, the solution set is ##\{-\sqrt[3] 2, \frac {\sqrt[3] 2} {2} \pm \frac {\sqrt[3] 2 \sqrt 3 } {2}i \}##
However, I want to approach it like this,
##x ^ 3 + 2 = 0##
##x ^ 3 = -2##
##x = \sqrt[3]-2##
What could I do next? From what I see, there is only one solution in this way?
##x ^ 3 + 2 = 0##
##x ^ 3 + \left (\sqrt[3] 2\right) ^ 3 = 0##
##\left(x + \sqrt[3] 2\right) \left(x ^ 2 - x\sqrt[3] 2 + \left(\sqrt[3] 2 \right)^2\right) =0##
##x + \sqrt[3] 2 = 0, x = -\sqrt[3] 2##
##x ^ 2 - x\sqrt[3] 2 + \left(\sqrt[3] 2\right)^2 = 0, x = \frac {\sqrt[3] 2} {2} \pm \frac {\sqrt[3] 2 \sqrt 3 } {2}i##
So, the solution set is ##\{-\sqrt[3] 2, \frac {\sqrt[3] 2} {2} \pm \frac {\sqrt[3] 2 \sqrt 3 } {2}i \}##
However, I want to approach it like this,
##x ^ 3 + 2 = 0##
##x ^ 3 = -2##
##x = \sqrt[3]-2##
What could I do next? From what I see, there is only one solution in this way?