MHB Find All Possible Values of $AD$ in Cyclic Quadrilateral

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cyclic
AI Thread Summary
In the cyclic quadrilateral $ABCD$ with equal sides $AB=BC=CA$, the diagonals $AC$ and $BD$ intersect at point $E$. Given the lengths $BE=19$ and $ED=6$, the problem requires finding all possible values of $AD$. Using the properties of cyclic quadrilaterals and the intersecting chords theorem, the relationship between the segments can be established. The calculations lead to potential values for $AD$, which can be derived from the known lengths and geometric properties. The solution ultimately reveals the possible lengths for side $AD$ in this configuration.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
$ABCD$ is a cyclic quadrilateral such that $AB=BC=CA$. Diagonals $AC$ and $BD$ intersect at $E$. Given that $BE=19$ and $ED=6$, find all the possible values of $AD$.
 
Mathematics news on Phys.org
[TIKZ]
\draw circle (4) ;
\coordinate [label=left:$A$] (A) at (210:4) ;
\coordinate [label=above:$B$] (B) at (90:4) ;
\coordinate [label=right:$C$] (C) at (330:4) ;
\coordinate [label=below:$D$] (D) at (290:4) ;
\coordinate [label=above right:$E$] (E) at (intersection of A--C and B--D) ;
\draw (A) -- (B) -- node[ right ]{$x$} (C) -- (D) -- (A) --(C) ;
\draw (B) -- node[ right ]{$19$} (E) -- node[ right ]{$6$} (D) ;
\draw (-0.1,3.3) node{$\theta$} ;[/TIKZ]
Let $x$ be the side length of the equilateral triangle $ABC$, and $\theta$ the angle $ABD$, as in the diagram.

By the sine rule in triangle $ABE$, $\dfrac{19}{\sin 60^\circ} = \dfrac x{\sin(\theta+60^\circ)}$.

By the sine rule in triangle $ABD$, $\dfrac{x}{\sin 60^\circ} = \dfrac {25}{\sin(\theta+60^\circ)} = \dfrac{AD}{\sin\theta}$.

Therefore $\dfrac{19}x = \dfrac x{25}$ and hence $x = 5\sqrt{19}$. Then $\sin(\theta+60^\circ) = \dfrac{25\sin60^\circ}x = \dfrac {5\sqrt3}{2\sqrt{19}}$ and $\sin^2(\theta+60^\circ) = \dfrac{75}{76}$. So $\cos^2(\theta+60^\circ) = \dfrac{1}{76}$ and $\cos(\theta+60^\circ) = \pm\dfrac1{2\sqrt{19}}.$ It follows that $$\begin{aligned}\sin\theta = \sin((\theta+60^\circ) - 60^\circ) &= \sin(\theta+60^\circ)\cos60^\circ - \cos(\theta+60^\circ)\sin60^\circ \\ &= \frac{5\sqrt3}{2\sqrt{19}}\cdot\frac12 \pm \frac1{2\sqrt{19}}\cdot\frac{\sqrt3}2 \\ &= \frac{\sqrt3}{\sqrt{19}} \text{ or } \frac{3\sqrt3}{2\sqrt{19}}.\end{aligned}$$ Then $x\sin\theta = 5\sqrt3$ or $\dfrac{15}2\sqrt3$, so from the above sine rule $AD = \dfrac{x\sin\theta}{\sin60^\circ} = 10$ or $15$.

The above diagram shows the longer alternative $AD = 15$, with $CD = 10$. The other alternative comes from interchanging $A$ and $C$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top