- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Let $x,\,y,\,z$ be complex numbers such that $|x|=|y|=|z|=1$.
If $\dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}=1$, find the product of all possible values of $|x+y+z|$.
If $\dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}=1$, find the product of all possible values of $|x+y+z|$.