- #1
Dustinsfl
- 2,281
- 5
$y''+y=\alpha\cos x + \cos^3x$
What value of $\alpha$ makes this resonance free?
$\cos^3 x = \frac{1}{4}\cos 3x+\frac{3}{4}\cos x$
So $y''+y=(\alpha+\frac{3}{4})\cos x + \frac{1}{4}\cos 3x$
What am I supposed to do to find alpha?
What value of $\alpha$ makes this resonance free?
$\cos^3 x = \frac{1}{4}\cos 3x+\frac{3}{4}\cos x$
So $y''+y=(\alpha+\frac{3}{4})\cos x + \frac{1}{4}\cos 3x$
What am I supposed to do to find alpha?