- #1
Math100
- 796
- 221
- Homework Statement
- Find an integer having the remainders ## 1, 2, 5, 5 ## when divided by ## 2, 3, 6, 12 ##, respectively. (Yih-hing, died ## 717 ##).
- Relevant Equations
- None.
Let ## x ## be an integer.
Then ## x\equiv 1\pmod {2}, x\equiv 2\pmod {3}, x\equiv 5\pmod {6} ## and ## x\equiv 5\pmod {12} ##.
Note that ## x\equiv 5\pmod {6}\implies x\equiv 5\pmod {2\cdot 3} ## and ## x\equiv 5\pmod {12}\implies x\equiv 5\pmod {3\cdot 4} ##.
Since ## gcd(2, 3)=1 ## and ## gcd(3, 4)=1 ##, it follows that ## x\equiv 1\pmod {4} ##.
This means ## x\equiv 2\pmod {3} ## and ## x\equiv 1\pmod {4} ##.
Now we have ## x=2+3a ## where ## a=1+4b ## for some ## a, b\in\mathbb{N} ##.
Thus ## x=2+3a=2+3(1+4b)=5+12b=5+12(1)=17 ##.
Therefore, the integer is ## 17 ##.
Then ## x\equiv 1\pmod {2}, x\equiv 2\pmod {3}, x\equiv 5\pmod {6} ## and ## x\equiv 5\pmod {12} ##.
Note that ## x\equiv 5\pmod {6}\implies x\equiv 5\pmod {2\cdot 3} ## and ## x\equiv 5\pmod {12}\implies x\equiv 5\pmod {3\cdot 4} ##.
Since ## gcd(2, 3)=1 ## and ## gcd(3, 4)=1 ##, it follows that ## x\equiv 1\pmod {4} ##.
This means ## x\equiv 2\pmod {3} ## and ## x\equiv 1\pmod {4} ##.
Now we have ## x=2+3a ## where ## a=1+4b ## for some ## a, b\in\mathbb{N} ##.
Thus ## x=2+3a=2+3(1+4b)=5+12b=5+12(1)=17 ##.
Therefore, the integer is ## 17 ##.