- #1
skrat
- 748
- 8
Homework Statement
Let ##a>0## and [itex]y(x)=\left\{\begin{matrix}
-x ;& x<-a\\
Cx^2+D;& -a<x<a\\
x;& x>a
\end{matrix}\right.[/itex]
a) Find ##C## and ##D## so that ##y\in C^1(\mathbb{R})##
b) For A>a calculate ##\int_{-A}^{A}(1-({y}')^2)dx##
c) Is it possible to find ##C## and ##D## so that ##y\in C^2(\mathbb{R})##?
Homework Equations
The Attempt at a Solution
Could somebody please check if there is anything ok?
a)
##{y}'(x)=\left\{\begin{matrix}
-1 ;& x<-a\\
2Cx;& -a<x<a\\
1;& x>a
\end{matrix}\right.##
Than ##{y}'(a)=-1=2Ca##, therefore ##C=\frac{1}{2a}##.
We also know that ##y(a)=Ca^2+D=a## therefore ##D=\frac{a}{2}##.
b)
For ##A>a## and ##y(x)=\left\{\begin{matrix}
-x ;& x<-a\\
\frac{1}{2a}x^2+\frac{a}{2};& -a<x<a\\
x;& x>a
\end{matrix}\right.## the integral is
##\int_{-A}^{A}(1-({y}')^2)dx=\int_{-A}^{-a}(1-({y}')^2)dx+\int_{-a}^{a}(1-({y}')^2)dx+\int_{a}^{A}(1-({y}')^2)dx##
First and last integral are both 0 ahile the second is ##\int_{-a}^{a}(1-({y}')^2)dx=\int_{-a}^{a}(1-(\frac{x}{a})^2)dx=\frac{16}{15}a##
That's IF I didn't make a mistake...
c)
##{y}''(x)=\left\{\begin{matrix}
0;& x<-a\\
2C;& -a<x<a\\
0;& x>a
\end{matrix}\right.##
Everything suggests that ##C=0##, therefore the answer is NO.
Last edited: