- #1
endeavor
- 176
- 0
Find f'(x) if it is known that
[tex]\frac{d}{dx}[f(2x)] = x^2[/tex]
I let u(x) = 2x, then
[tex]\frac{d}{dx}[f(u)] = \frac{dy}{du} \frac{du}{dx}[/tex]
[tex]\frac{d}{dx}[f(2x)] = 2 \frac{dy}{du}[/tex]
therefore
[tex]\frac{dy}{du} = \frac{1}{2}x^2[/tex]
then
[tex]f'(x) = \frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}[/tex]
[tex] = (\frac{1}{2}x^2) (2)[/tex]
[tex] = x^2[/tex]
why doesn't this work??
[tex]\frac{d}{dx}[f(2x)] = x^2[/tex]
I let u(x) = 2x, then
[tex]\frac{d}{dx}[f(u)] = \frac{dy}{du} \frac{du}{dx}[/tex]
[tex]\frac{d}{dx}[f(2x)] = 2 \frac{dy}{du}[/tex]
therefore
[tex]\frac{dy}{du} = \frac{1}{2}x^2[/tex]
then
[tex]f'(x) = \frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}[/tex]
[tex] = (\frac{1}{2}x^2) (2)[/tex]
[tex] = x^2[/tex]
why doesn't this work??