- #1
psie
- 259
- 32
- Homework Statement
- Reduce the ODEs ##x'''+x^2=1, x''=x^{-1/2}## and ##x''=\sqrt{1+(x')^2}## to a system of first order and find a naturally defined region ##\Omega## where the right hand side satisfies a Lipschitz condition.
- Relevant Equations
- ##f## satisfies a Lipschitz condition in the ##x##-variable in a set ##\Omega## if ##\lVert f(t,x)-f(t,y)\rVert\leq L\lVert x-y\rVert##, for some positive constant ##L##.
The reduction is simple in all cases. For the first one, put ##x_1=x, x_2=x'## and ##x_3=x''##. Let ##\pmb{x}=(x_1,x_2,x_3)##. Then we get $$\pmb{x}'= \begin{pmatrix}x_1' \\ x_2' \\ x_3' \end{pmatrix}=\begin{pmatrix}x_2 \\ x_3 \\ 1-x_1^2 \end{pmatrix}=\pmb{f}(\pmb{x}),$$ where ##\pmb{f}(\pmb{x})=(f_1(\pmb{x}),f_2(\pmb{x}),f_3(\pmb{x}))=(x_2,x_3,1-x_1^2)##.
Similarly, ##\pmb{g}(\pmb{x})=(x_2,x_1^{-1/2})## and ##\pmb{h}(\pmb{x})=(x_2,\sqrt{1+(x_2)^2})## for the other two ODEs.
In the first case, I'm interested in finding a subset of ##\mathbb R^3## such that I can bound ##\lVert \pmb{f}(\pmb{x})-\pmb{f}(\pmb{x})\rVert##. I'm unsure how to approach this in all cases, whether to use the definition of some norm directly or the mean value theorem. In the latter case, I'm unsure how the mean value theorem applies to vector-valued functions of a vector. Anyway, grateful for any help.
Similarly, ##\pmb{g}(\pmb{x})=(x_2,x_1^{-1/2})## and ##\pmb{h}(\pmb{x})=(x_2,\sqrt{1+(x_2)^2})## for the other two ODEs.
In the first case, I'm interested in finding a subset of ##\mathbb R^3## such that I can bound ##\lVert \pmb{f}(\pmb{x})-\pmb{f}(\pmb{x})\rVert##. I'm unsure how to approach this in all cases, whether to use the definition of some norm directly or the mean value theorem. In the latter case, I'm unsure how the mean value theorem applies to vector-valued functions of a vector. Anyway, grateful for any help.
Last edited: