- #1
UrbanXrisis
- 1,196
- 1
matrix [tex]A = \left(\begin{array}{ccc}3&0&0 \\ 0&3&0 \\3&0&0 \end{array}\right)[/tex]
has two real eigenvalues lambda_1=3 of multiplicity 2, and lambda_2=0 of multiplicity 1. find the eigenspace.
[tex]A = \left(\begin{array}{ccc}3-3 &0&0 \\ 0&3-3&0 \\3&0&0-3 \end{array}\right)[/tex]
[tex]A = \left(\begin{array}{ccc}0 &0&0 \\ 0&0&0 \\3&0&-3 \end{array}\right)[/tex]
[tex]A = \left(\begin{array}{ccc}1&0&-1 \\ 0&0&0 \\0&0&0 \end{array}\right)[/tex]
that means the eigenspace for lambda_1 is the column vector [0 1 0] and [1 0 1]
for lambda_2, there will be two different eigenspaces such that...
[tex]A = \left(\begin{array}{ccc}1&0&0 \\ 0&1&0 \\0&0&0 \end{array}\right)[/tex]
I know the answer has two vectors, how do i get two vectors when I have 4 that defines the eigenspace?
has two real eigenvalues lambda_1=3 of multiplicity 2, and lambda_2=0 of multiplicity 1. find the eigenspace.
[tex]A = \left(\begin{array}{ccc}3-3 &0&0 \\ 0&3-3&0 \\3&0&0-3 \end{array}\right)[/tex]
[tex]A = \left(\begin{array}{ccc}0 &0&0 \\ 0&0&0 \\3&0&-3 \end{array}\right)[/tex]
[tex]A = \left(\begin{array}{ccc}1&0&-1 \\ 0&0&0 \\0&0&0 \end{array}\right)[/tex]
that means the eigenspace for lambda_1 is the column vector [0 1 0] and [1 0 1]
for lambda_2, there will be two different eigenspaces such that...
[tex]A = \left(\begin{array}{ccc}1&0&0 \\ 0&1&0 \\0&0&0 \end{array}\right)[/tex]
I know the answer has two vectors, how do i get two vectors when I have 4 that defines the eigenspace?