- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
$$y''+\lambda y =0$$
$$y(0)=0$$
$$y'(0)=\frac{y'(1)}{2}$$
I have to show that the eigenvalues are complex and are given by the relation $\cos{\sqrt{\lambda}}=2$ except from one that is real.
The characteristic equation is $m^2+\lambda =0 \Rightarrow m= \pm \sqrt{ \lambda}$$*$ $\lambda <0$:
$y(x)=c_1 e^{ \sqrt{ \lambda}x}+c_2 e^{- \sqrt{\lambda}x}$
$y(0)=0 \Rightarrow c_1+c_2=0 \Rightarrow c_2=-c_1$
$y(x)=c_1(e^{ \sqrt{ \lambda}x}- e^{- \sqrt{\lambda}x})$
$y'(x)= \sqrt{\lambda} c_1(e^{ \sqrt{ \lambda}x}- e^{- \sqrt{\lambda}x})$
$y'(0)=\frac{y'(1)}{2} \Rightarrow \sqrt{\lambda} c_1=\frac{\sqrt{\lambda} c_1(e^{ \sqrt{ \lambda}}- e^{- \sqrt{\lambda}})}{2} \Rightarrow 2=e^{ \sqrt{ \lambda}}- e^{- \sqrt{\lambda}} \Rightarrow e^{2 \sqrt{\lambda}}-2 e^{\sqrt{\lambda}}+1=0 \Rightarrow (e^{\sqrt{\lambda}}-1)^2=0 \Rightarrow e^{\sqrt{\lambda}}=1 \Rightarrow \lambda =0$
That can not be true since I have supposed that $\lambda <0$.$*$ $\lambda =0$:
$y''=0 \Rightarrow y(x)=c_1 x+c_2$
$y(0)=0 \Rightarrow c_2=0$
$y(x)=c_1 x \Rightarrow y'(x)=c_1$
$y'(0)=\frac{y'(1)}{2} \Rightarrow c_1=\frac{c_1}{2} \Rightarrow c_1=0$
It's the trivial solution.$*$ $\lambda >0$:
$y(x)=c_1 \cos{(\sqrt{\lambda}x)}+c_2 \sin{(\sqrt{\lambda}x)}$
$y(0)=0 \Rightarrow c_1=0$
$y(x)=c_2 \sin{(\sqrt{\lambda}x)} \Rightarrow y'(x)=\sqrt{\lambda} c_2 \cos{(\sqrt{\lambda}x)}$
$y'(0)=\frac{y'(1)}{2} \Rightarrow \sqrt{\lambda} c_2 =\frac{\sqrt{\lambda} c_2 \cos{(\sqrt{\lambda})}}{2} \Rightarrow \cos{(\sqrt{\lambda})}=2$
So the eigenvalues are given by the relation $\cos{(\sqrt{\lambda})}=2$.
Is this correct?? (Wondering)
But are the eigenvalues that are given by the relation $\cos{(\sqrt{\lambda})}=2$ complex?
And how can I find the one real eigenvalue?
$$y''+\lambda y =0$$
$$y(0)=0$$
$$y'(0)=\frac{y'(1)}{2}$$
I have to show that the eigenvalues are complex and are given by the relation $\cos{\sqrt{\lambda}}=2$ except from one that is real.
The characteristic equation is $m^2+\lambda =0 \Rightarrow m= \pm \sqrt{ \lambda}$$*$ $\lambda <0$:
$y(x)=c_1 e^{ \sqrt{ \lambda}x}+c_2 e^{- \sqrt{\lambda}x}$
$y(0)=0 \Rightarrow c_1+c_2=0 \Rightarrow c_2=-c_1$
$y(x)=c_1(e^{ \sqrt{ \lambda}x}- e^{- \sqrt{\lambda}x})$
$y'(x)= \sqrt{\lambda} c_1(e^{ \sqrt{ \lambda}x}- e^{- \sqrt{\lambda}x})$
$y'(0)=\frac{y'(1)}{2} \Rightarrow \sqrt{\lambda} c_1=\frac{\sqrt{\lambda} c_1(e^{ \sqrt{ \lambda}}- e^{- \sqrt{\lambda}})}{2} \Rightarrow 2=e^{ \sqrt{ \lambda}}- e^{- \sqrt{\lambda}} \Rightarrow e^{2 \sqrt{\lambda}}-2 e^{\sqrt{\lambda}}+1=0 \Rightarrow (e^{\sqrt{\lambda}}-1)^2=0 \Rightarrow e^{\sqrt{\lambda}}=1 \Rightarrow \lambda =0$
That can not be true since I have supposed that $\lambda <0$.$*$ $\lambda =0$:
$y''=0 \Rightarrow y(x)=c_1 x+c_2$
$y(0)=0 \Rightarrow c_2=0$
$y(x)=c_1 x \Rightarrow y'(x)=c_1$
$y'(0)=\frac{y'(1)}{2} \Rightarrow c_1=\frac{c_1}{2} \Rightarrow c_1=0$
It's the trivial solution.$*$ $\lambda >0$:
$y(x)=c_1 \cos{(\sqrt{\lambda}x)}+c_2 \sin{(\sqrt{\lambda}x)}$
$y(0)=0 \Rightarrow c_1=0$
$y(x)=c_2 \sin{(\sqrt{\lambda}x)} \Rightarrow y'(x)=\sqrt{\lambda} c_2 \cos{(\sqrt{\lambda}x)}$
$y'(0)=\frac{y'(1)}{2} \Rightarrow \sqrt{\lambda} c_2 =\frac{\sqrt{\lambda} c_2 \cos{(\sqrt{\lambda})}}{2} \Rightarrow \cos{(\sqrt{\lambda})}=2$
So the eigenvalues are given by the relation $\cos{(\sqrt{\lambda})}=2$.
Is this correct?? (Wondering)
But are the eigenvalues that are given by the relation $\cos{(\sqrt{\lambda})}=2$ complex?
And how can I find the one real eigenvalue?
Last edited by a moderator: