- #1
maxkor
- 84
- 0
Let $n \equiv 3 (\mod{6})$ objects $a_1, a_2, \dots, a_n$, show one can find $\frac{\binom{n}{2}}{3}$ triples $(a_i,a_j,a_k)$ such that every pair $(a_i,a_j) (i \ne j)$ appears in exactly one triple.