- #1
ognik
- 643
- 2
Hi - firstly should I be concerned that the dirac function is NOT periodic?
Either way the problem says expand $\delta(x-t)$ as a Fourier series...
I tried $\delta(x-t) = 1, x=t; \delta(x-t) =0, x \ne t , -\pi \le t \le \pi$ ... ('1' still delivers the value of a multiplied function at t)
from there I tried $a_0 = \lim_{{\in}\to{0}}\frac{1}{\pi}\int_{t-\in}^{t+\in}1 \,dx $, but that's not going to give the answer in the book ($\frac{1}{2\pi} +\frac{1}{\pi} \sum_{n=1}^{\infty} Cosn(x-t)$)
A hint on how to start this please?
Either way the problem says expand $\delta(x-t)$ as a Fourier series...
I tried $\delta(x-t) = 1, x=t; \delta(x-t) =0, x \ne t , -\pi \le t \le \pi$ ... ('1' still delivers the value of a multiplied function at t)
from there I tried $a_0 = \lim_{{\in}\to{0}}\frac{1}{\pi}\int_{t-\in}^{t+\in}1 \,dx $, but that's not going to give the answer in the book ($\frac{1}{2\pi} +\frac{1}{\pi} \sum_{n=1}^{\infty} Cosn(x-t)$)
A hint on how to start this please?