- #1
LCSphysicist
- 646
- 162
- Homework Statement
- I will post a print
- Relevant Equations
- .
I need to find the FT of this function. Here is my attempt:
$$H(f) = \int_{0}^{\infty} ke^{-2 \pi i f t}dt$$
We know that ##\delta(t) = \int_{-\infty}^{\infty} e^{2 \pi i f t} df##, the part with sin in this integration vanish, so that, and knowing that cos is a even function, we can write ##\delta(t) = \int_{-\infty}^{\infty} e^{2 \pi i f t} df = \int_{-\infty}^{\infty} e^{-2 \pi i f t} df##.
Now, for example, ##\int_{-a}^{a}x^2 = 2\int_{0}^{a}x^2##. So we can write the delta above as ##\delta(t) = \int_{\infty}^{\infty} e^{-2 \pi i f t} df = 2\int_{0}^{\infty} e^{-2 \pi i f t} df##.
Putting this in the first formula $$H(f) = \int_{0}^{\infty} ke^{-2 \pi i f t}dt$$:
##H(f) = \int_{0}^{\infty} ke^{-2 \pi i f t} dt = k \delta(f) /2##
This make sense or you? Is it right?