- #1
NoName3
- 25
- 0
Find $\text{glb}(A)$ if $A = \left\{(-1)^n \left(\frac{1}{4}-\frac{2}{n} \right): n \in \mathbb{N}\right\}$.$\displaystyle x_n = (-1)^n \left(\frac{1}{4}-\frac{2}{n} \right)$ then $ \displaystyle x_{2k} = \frac{1}{4}-\dfrac{1}{k} = \frac{k-4}{4k}$ and $ \displaystyle x_{2k+1} = -\left(\frac{1}{4}-\frac{2}{2k+1}\right) = \frac{7-2k}{4(2k+1)}$.
Now we analyse $x_{2k}$ Let $j = 2k$ then $x_{j} = \dfrac{j-8}{4j}$ and $x_{j+1} = \dfrac{j-7}{4(j+1)} $. Which is bigger: $x_j$ or $x_{j+1}$?
That's where I'm stuck - I can't analyse $x_{2k}, x_{2k+1}$. Is there a trick to it or we have to analyse cases?
Now we analyse $x_{2k}$ Let $j = 2k$ then $x_{j} = \dfrac{j-8}{4j}$ and $x_{j+1} = \dfrac{j-7}{4(j+1)} $. Which is bigger: $x_j$ or $x_{j+1}$?
That's where I'm stuck - I can't analyse $x_{2k}, x_{2k+1}$. Is there a trick to it or we have to analyse cases?
Last edited: