- #1
chwala
Gold Member
- 2,753
- 388
- Homework Statement
- Find, in the form ##x+iy##, the complex numbers given in the polar coordinate form by;
##z=2\left[\cos \dfrac{3π}{4} + i \sin \dfrac{3π}{4}\right]##
- Relevant Equations
- complex numbers
This is the question as it appears on the pdf. copy;
##z=2\left[\cos \dfrac{3π}{4} + i \sin \dfrac{3π}{4}\right]##
My approach;
##\dfrac{3π}{4}=135^0##
##\tan 135^0=-\tan 45^0=\dfrac{-\sqrt{2}}{\sqrt{2}}##
therefore,
##z=-\sqrt{2}+\sqrt{2}i##
There may be a better approach.
##z=2\left[\cos \dfrac{3π}{4} + i \sin \dfrac{3π}{4}\right]##
My approach;
##\dfrac{3π}{4}=135^0##
##\tan 135^0=-\tan 45^0=\dfrac{-\sqrt{2}}{\sqrt{2}}##
therefore,
##z=-\sqrt{2}+\sqrt{2}i##
There may be a better approach.