MHB Find Integer Part of A: Math Problem

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Integer
Albert1
Messages
1,221
Reaction score
0
$A=(\dfrac{16\times72+17\times73+18\times74+19\times75}{16\times71+17\times72+18\times73+19\times74})\times 150$
find the integer part of A
 
Mathematics news on Phys.org
A = $( 1+\frac{16+ 17+ 18 + 19}{16 * 71 + 17 * 72 + 18 * 73 + 19 * 74}) * 150$
= $150 +\frac{16 * 150 + 17 * 150 + 18 * 150 + 19 *150}{16 * 71 + 17 * 72 + 18 * 73 + 19 * 74}$
= $150 + 2 +\frac{16 *8 + 17 * 6 + 18 * 4 + 19 *2}{16 * 71 + 17 * 72 + 18 * 73 + 19 * 74}$

so ans = 152
 
Last edited:
kaliprasad said:
A = $( 1+\frac{16+ 17+ 18 + 19}{16 * 71 + 17 * 72 + 18 * 73 + 19 * 74}) * 150$
= $150 +\frac{16 * 150 + 17 * 150 + 18 * 150 + 19 *150}{16 * 71 + 17 * 72 + 18 * 73 + 19 * 74}$
= $152 +\frac{16 * 8 + 17 * 6 + 18 * 4 + 19 *8}{16 * 71 + 17 * 72 + 18 * 73 + 19 * 74}$


so ans = 152
it should be:
= $152 +\frac{16 * 8 + 17 * 6 + 18 * 4 + 19 *2}{16 * 71 + 17 * 72 + 18 * 73 + 19 * 74}$indeed very smart solution:)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
7
Views
2K
Replies
4
Views
1K
Replies
1
Views
1K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
3
Views
2K
Back
Top