- #1
Reshma
- 749
- 6
Find the inverse of A given by:
[tex]A = \left[\begin{array}{ccc}\cos \phi & -\cos \theta \sin \phi & \sin \theta \sin \phi \\\sin \phi & \cos \theta \cos \phi & -\sin \theta \cos \phi \\0 & \sin \theta & \cos \theta\end{array}\right][/tex]
I have never encountered a problem in Matrices involving long trigonometric functions. How do I find the inverse? Should I use the same row-reduction method for this?
[tex]A = \left[\begin{array}{ccc}\cos \phi & -\cos \theta \sin \phi & \sin \theta \sin \phi \\\sin \phi & \cos \theta \cos \phi & -\sin \theta \cos \phi \\0 & \sin \theta & \cos \theta\end{array}\right][/tex]
I have never encountered a problem in Matrices involving long trigonometric functions. How do I find the inverse? Should I use the same row-reduction method for this?