- #1
Vali
- 48
- 0
I have the following sequence $(a_{n})$, $a_{1}=1$
$$a_{n+1}=\begin{cases}
a_{n}+\frac{1}{2} & \text{ if } n \ is \ even \\
\frac{a_{n}}{3} & \text{ if } n \ is \ odd
\end{cases}$$
I need to find $$\lim_{n\rightarrow \infty }a_{2n+1}$$
I tried something but I didn't get too far.I rewrite the sequence:$a_{1}=1$, $$a_{n+1}=\begin{cases}
a_{n}+r & \text{ if } n \ is \ even \\
q \cdot a_{n} & \text{ if } n \ is \ odd
\end{cases}$$
where $q,r\in (0,1)$ but I don't know how to write $a_{2n+1}$ with $q$ and $r$
$$a_{n+1}=\begin{cases}
a_{n}+\frac{1}{2} & \text{ if } n \ is \ even \\
\frac{a_{n}}{3} & \text{ if } n \ is \ odd
\end{cases}$$
I need to find $$\lim_{n\rightarrow \infty }a_{2n+1}$$
I tried something but I didn't get too far.I rewrite the sequence:$a_{1}=1$, $$a_{n+1}=\begin{cases}
a_{n}+r & \text{ if } n \ is \ even \\
q \cdot a_{n} & \text{ if } n \ is \ odd
\end{cases}$$
where $q,r\in (0,1)$ but I don't know how to write $a_{2n+1}$ with $q$ and $r$