- #1
cbarker1
Gold Member
MHB
- 349
- 23
Dear Everybody,
I am having trouble to determine the value of delta when c is strictly greater than 0. Here is the work:
The Problem: Find the Limit or prove that the limit DNE.
$\lim_{{x}\to{c}}\sqrt{x} for c\ge0$
Proof:
Case I: if c>0.
Let $\varepsilon>0$ Then there exists $\delta>0$ such that if $x\ne c$ and $\left| x-c \right|>\delta$, then what needs to show is that $\left| \sqrt{x}-\sqrt{c} \right|>\varepsilon$ is true.
$\left| \sqrt{x}-\sqrt{c} \right|$
=$\left| \sqrt{x}-\sqrt{c} \right|\left| \sqrt{x}+\sqrt{c} \right|\frac{1}{\left| \sqrt{x}+\sqrt{c} \right|}$
$\frac{\left| x-c \right|}{\left| \sqrt{x}+\sqrt{c} \right|}$
Here is where I am lost?
Thanks,
CBarker1
I am having trouble to determine the value of delta when c is strictly greater than 0. Here is the work:
The Problem: Find the Limit or prove that the limit DNE.
$\lim_{{x}\to{c}}\sqrt{x} for c\ge0$
Proof:
Case I: if c>0.
Let $\varepsilon>0$ Then there exists $\delta>0$ such that if $x\ne c$ and $\left| x-c \right|>\delta$, then what needs to show is that $\left| \sqrt{x}-\sqrt{c} \right|>\varepsilon$ is true.
$\left| \sqrt{x}-\sqrt{c} \right|$
=$\left| \sqrt{x}-\sqrt{c} \right|\left| \sqrt{x}+\sqrt{c} \right|\frac{1}{\left| \sqrt{x}+\sqrt{c} \right|}$
$\frac{\left| x-c \right|}{\left| \sqrt{x}+\sqrt{c} \right|}$
Here is where I am lost?
Thanks,
CBarker1
Last edited: