- #1
skoker
- 10
- 0
find the LU-factorization of $A=\begin{bmatrix} a\ b\ \; \\ c\ d\ \; \end{bmatrix}$ that has 1's along the main diagonal of L.are there restrictions on the matrix A?\( A=\begin{bmatrix} \;a\ b\ \; \\ \;c\ d\ \; \end{bmatrix} \)
\( U=-\frac{c}{a}r_1+r_2\rightarrow r_2\begin{bmatrix} \;a\ b\ \; \\ \;0\ d-cb\ \; \end{bmatrix}
=\underset{E_1}{\begin{bmatrix} \;1\ 0\ \; \\ \;-\frac{c}{a}\ 1\ \; \end{bmatrix}}.\underset{A}{\begin{bmatrix} \;a\ b\ \; \\ \;c\ d\ \; \end{bmatrix}} \)
\( L=\underset{E^{-1}_1}{\begin{bmatrix} \;1\ 0\ \; \\ \;\frac{c}{a}\ 1\ \; \end{bmatrix}} \)
\( \therefore A=LU \)
first does this satisfy the the a=lu? also i am not sure the restrictions they are talking about? it seems to have no restrictions.
\( U=-\frac{c}{a}r_1+r_2\rightarrow r_2\begin{bmatrix} \;a\ b\ \; \\ \;0\ d-cb\ \; \end{bmatrix}
=\underset{E_1}{\begin{bmatrix} \;1\ 0\ \; \\ \;-\frac{c}{a}\ 1\ \; \end{bmatrix}}.\underset{A}{\begin{bmatrix} \;a\ b\ \; \\ \;c\ d\ \; \end{bmatrix}} \)
\( L=\underset{E^{-1}_1}{\begin{bmatrix} \;1\ 0\ \; \\ \;\frac{c}{a}\ 1\ \; \end{bmatrix}} \)
\( \therefore A=LU \)
first does this satisfy the the a=lu? also i am not sure the restrictions they are talking about? it seems to have no restrictions.