- #1
Albert1
- 1,221
- 0
if $n\in N$ , $9<n<100$, and $f(n)=$ all digits sum of $n$
(1)find $max(\dfrac {n}{f(n)})$ and $min(\dfrac {n}{f(n)})$
now if:
if $n\in N$ , $999<n<10000$, and $f(n)=$ all digits sum of $n$
(2)find $max(\dfrac {n}{f(n)})$ and $min(\dfrac {n}{f(n)})$
(1)find $max(\dfrac {n}{f(n)})$ and $min(\dfrac {n}{f(n)})$
now if:
if $n\in N$ , $999<n<10000$, and $f(n)=$ all digits sum of $n$
(2)find $max(\dfrac {n}{f(n)})$ and $min(\dfrac {n}{f(n)})$
Last edited: