- #1
juantheron
- 247
- 1
Find a point $P$ on the line $3x+2y+10=0$ such that $PA+PB$ is minimum given that $A$ is
$(4,2)$ and $B$ is $(2,4)$
My Try: Let Coordinate of point $P$ be $(x,y)$. Then $PA = \sqrt{(x-4)^2+(y-2)^2}$ and $PB = \sqrt{(x-2)^2+(y-4)^2}$
Now Let $f(x,y) = \sqrt{(x-4)^2+(y-2)^2}+\sqrt{(x-2)^2+(y-4)^2}$
Now How can i Minimize $f(x,y)$
Help me
Thanks
$(4,2)$ and $B$ is $(2,4)$
My Try: Let Coordinate of point $P$ be $(x,y)$. Then $PA = \sqrt{(x-4)^2+(y-2)^2}$ and $PB = \sqrt{(x-2)^2+(y-4)^2}$
Now Let $f(x,y) = \sqrt{(x-4)^2+(y-2)^2}+\sqrt{(x-2)^2+(y-4)^2}$
Now How can i Minimize $f(x,y)$
Help me
Thanks